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teams. For instance:
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Notes by Yves Meyer

The history of wavelets is not very old, at most 10 to 15 years. The field experienced a fast
and impressive start, characterized by a close-knit international community of
researchers who freely circulated scientific information and were driven by the
researchers' youthful enthusiasm. Even as the commercial rewards promised to be
significant, the ideas were shared, the trials were pooled together, and the successes
were shared by the community.

There are lots of successes for the community to share. Why? Probably because the time
is ripe. Fourier techniques were liberated by the appearance of windowed Fourier
methods that operate locally on a time-frequency approach. In another direction, Burt-
Adelson's pyramidal algorithms, the quadrature mirror filters, and filter banks and
subband coding are available. The mathematics underlying those algorithms existed
earlier, but new computing techniques enabled researchers to try out new ideas rapidly.
The numerical image and signal processing areas are blooming.

The wavelets bring their own strong benefits to that environment: a local outlook, a
multiscaled outlook, cooperation between scales, and a time-scale analysis. They
demonstrate that sines and cosines are not the only useful functions and that other bases
made of weird functions serve to look at new foreign signals, as strange as most fractals
or some transient signals.

Recently, wavelets were determined to be the best way to compress a huge library of
fingerprints. This is not only a milestone that highlights the practical value of wavelets,
but it has also proven to be an instructive process for the researchers involved in the
project. Our initial intuition generally was that the proper way to tackle this problem of
interweaving lines and textures was to use wavelet packets, a flexible technique endowed
with quite a subtle sharpness of analysis and a substantial compression capability.
However, it was a biorthogonal wavelet that emerged victorious and at this time
represents the best method in terms of cost as well as speed. Our intuitions led one way,
but implementing the methods settled the issue by pointing us in the right direction.
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For wavelets, the period of growth and intuition is becoming a time of consolidation and
implementation. In this context, a toolbox is not only possible, but valuable. It provides a
working environment that permits experimentation and enables implementation.

Since the field still grows, it has to be vast and open. The Wavelet Toolbox product
addresses this need, offering an array of tools that can be organized according to several
criteria:

• Synthesis and analysis tools
• Wavelet and wavelet packets approaches
• Signal and image processing
• Discrete and continuous analyses
• Orthogonal and redundant approaches
• Coding, de-noising and compression approaches

What can we anticipate for the future, at least in the short term? It is difficult to make an
accurate forecast. Nonetheless, it is reasonable to think that the pace of development and
experimentation will carry on in many different fields. Numerical analysis constantly uses
new bases of functions to encode its operators or to simplify its calculations to solve
partial differential equations. The analysis and synthesis of complex transient signals
touches musical instruments by studying the striking up, when the bow meets the cello
string. The analysis and synthesis of multifractal signals, whose regularity (or rather
irregularity) varies with time, localizes information of interest at its geographic location.
Compression is a booming field, and coding and de-noising are promising.

For each of these areas, the Wavelet Toolbox software provides a way to introduce, learn,
and apply the methods, regardless of the user's experience. It includes a command-line
mode and a graphical user interface mode, each very capable and complementing to the
other. The user interfaces help the novice to get started and the expert to implement
trials. The command line provides an open environment for experimentation and addition
to the graphical interface.

In the journey to the heart of a signal's meaning, the toolbox gives the traveler both
guidance and freedom: going from one point to the other, wandering from a tree structure
to a superimposed mode, jumping from low to high scale, and skipping a breakdown point
to spot a quadratic chirp. The time-scale graphs of continuous analysis are often
breathtaking and more often than not enlightening as to the structure of the signal.

Here are the tools, waiting to be used.
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Notes by Ingrid Daubechies

Wavelet transforms, in their different guises, have come to be accepted as a set of tools
useful for various applications. Wavelet transforms are good to have at one's fingertips,
along with many other mostly more traditional tools.

Wavelet Toolbox software is a great way to work with wavelets. The toolbox, together with
the power of MATLAB® software, really allows one to write complex and powerful
applications, in a very short amount of time. The Graphic User Interface is both user-
friendly and intuitive. It provides an excellent interface to explore the various aspects and
applications of wavelets; it takes away the tedium of typing and remembering the various
function calls.

Ingrid C. Daubechies
Professor, Princeton University, Department of Mathematics and Program in Applied and
Computational Mathematics
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Wavelet Families
The Wavelet Toolbox software includes a large number of wavelets that you can use for
both continuous and discrete analysis. For discrete analysis, examples include orthogonal
wavelets (Daubechies’ extremal phase and least asymmetric wavelets) and B-spline
biorthogonal wavelets. For continuous analysis, the Wavelet Toolbox software includes
Morlet, Meyer, derivative of Gaussian, and Paul wavelets.

The choice of wavelet is dictated by the signal or image characteristics and the nature of
the application. If you understand the properties of the analysis and synthesis wavelet,
you can choose a wavelet that is optimized for your application.

Wavelet families vary in terms of several important properties. Examples include:

• Support of the wavelet in time and frequency and rate of decay.
• Symmetry or antisymmetry of the wavelet. The accompanying perfect reconstruction
filters have linear phase.

• Number of vanishing moments. Wavelets with increasing numbers of vanishing
moments result in sparse representations for a large class of signals and images.

• Regularity of the wavelet. Smoother wavelets provide sharper frequency resolution.
Additionally, iterative algorithms for wavelet construction converge faster.

• Existence of a scaling function, φ.

For continuous analysis, the Wavelet Toolbox software analytic wavelet-based analysis for
select wavelets. See cwt and icwt for details. “Inverse Continuous Wavelet Transform”
for a basic theoretical motivation. “CWT-Based Time-Frequency Analysis” illustrates the
use of the continuous wavelet transform for simulated and real-world signals.

Entering waveinfo at the command line displays a survey of the main properties of
available wavelet families. For a specific wavelet family, use waveinfo with the wavelet
family short name. You can find the wavelet family short names listed in the following
table and on the reference page for waveinfo.

Wavelet Family Short
Name

Wavelet Family Name

'haar' Haar wavelet
'db' Daubechies wavelets
'sym' Symlets
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Wavelet Family Short
Name

Wavelet Family Name

'coif' Coiflets
'bior' Biorthogonal wavelets
'rbio' Reverse biorthogonal wavelets
'meyr' Meyer wavelet
'dmey' Discrete approximation of Meyer wavelet
'gaus' Gaussian wavelets
'mexh' Mexican hat wavelet (also known as the Ricker wavelet)
'morl' Morlet wavelet
'cgau' Complex Gaussian wavelets
'shan' Shannon wavelets
'fbsp' Frequency B-Spline wavelets
'cmor' Complex Morlet wavelets
'fk' Fejer-Korovkin wavelets

To display detailed information about the Daubechies’ least asymmetric orthogonal
wavelets, enter:

waveinfo('sym')

To compute the wavelet and scaling function (if available), use wavefun.

The Morlet wavelet is suitable for continuous analysis. There is no scaling function
associated with the Morlet wavelet. To compute the Morlet wavelet, you can enter:

[psi,xval] = wavefun('morl',10);
plot(xval,psi); title('Morlet Wavelet');

 Wavelet Families
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For wavelets associated with a multiresolution analysis, you can compute both the scaling
function and wavelet. The following code returns the scaling function and wavelet for the
Daubechies’ extremal phase wavelet with 4 vanishing moments.

[phi,psi,xval] = wavefun('db4',10);
subplot(211);
plot(xval,phi);
title('db4 Scaling Function');
subplot(212);
plot(xval,psi);
title('db4 Wavelet');
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In discrete wavelet analysis, the analysis and synthesis filters are of more interest than
the associated scaling function and wavelet. You can use wfilters to obtain the analysis
and synthesis filters.

Obtain the decomposition (analysis) and reconstruction (synthesis) filters for the B-spline
biorthogonal wavelet. Specify 3 vanishing moments in the synthesis wavelet and 5
vanishing moments in the analysis wavelet. Plot the filters’ impulse responses.

[LoD,HiD,LoR,HiR] = wfilters('bior3.5');
subplot(221);
stem(LoD);
title('Lowpass Analysis Filter');
subplot(222);
stem(HiD);
title('Highpass Analysis Filter');
subplot(223);
stem(LoR);
title('Lowpass Synthesis Filter');
subplot(224);
stem(HiR);
title('Highpass Synthesis Filter');

 Wavelet Families
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Daubechies Wavelets: dbN
The dbN wavelets are the Daubechies’ extremal phase wavelets. N refers to the number of
vanishing moments. These filters are also referred to in the literature by the number of
filter taps, which is 2N. More about this family can be found in [Dau92] page 195. Enter
waveinfo('db') at the MATLAB command prompt to obtain a survey of the main
properties of this family.
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Daubechies Wavelets db4 on the Left and db8 on the Right

The db1 wavelet is also known as the Haar wavelet. The Haar wavelet is the only
orthogonal wavelet with linear phase. Using waveinfo('haar'), you can obtain a
survey of the main properties of this wavelet.

Symlet Wavelets: symN
The symN wavelets are also known as Daubechies’ least-asymmetric wavelets. The
symlets are more symmetric than the extremal phase wavelets. In symN, N is the number
of vanishing moments. These filters are also referred to in the literature by the number of
filter taps, which is 2N. More about symlets can be found in [Dau92], pages 198, 254-257.
Enter waveinfo('sym') at the MATLAB command prompt to obtain a survey of the
main properties of this family.
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Symlets sym4 on the Left and sym8 on the Right

Coiflet Wavelets: coifN
Coiflet scaling functions also exhibit vanishing moments. In coifN, N is the number of
vanishing moments for both the wavelet and scaling functions. These filters are also
referred to in the literature by the number of filter coefficients, which is 3N. For the
coiflet construction, see [Dau92] pages 258–259. Enter waveinfo('coif') at the
MATLAB command prompt to obtain a survey of the main properties of this family.

Coiflets coif3 on the Left and coif5 on the Right
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If s is a sufficiently regular continuous time signal, for large j the coefficient s, ϕ− j, k  is
approximated by 2− j/2s(2− jk).

If s is a polynomial of degree d, d ≤ N – 1, the approximation becomes an equality. This
property is used, connected with sampling problems, when calculating the difference
between an expansion over the φj,l of a given signal and its sampled version.

Biorthogonal Wavelet Pairs: biorNr.Nd
While the Haar wavelet is the only orthogonal wavelet with linear phase, you can design
biorthogonal wavelets with linear phase.

Biorthogonal wavelets feature a pair of scaling functions and associated scaling filters —
one for analysis and one for synthesis.

There is also a pair of wavelets and associated wavelet filters — one for analysis and one
for synthesis.

The analysis and synthesis wavelets can have different numbers of vanishing moments
and regularity properties. You can use the wavelet with the greater number of vanishing
moments for analysis resulting in a sparse representation, while you use the smoother
wavelet for reconstruction.

See [Dau92] pages 259, 262–85 and [Coh92] for more details on the construction of
biorthogonal wavelet bases. Enter waveinfo('bior') at the command line to obtain a
survey of the main properties of this family.

The following code returns the B-spline biorthogonal reconstruction and decomposition
filters with 3 and 5 vanishing moments and plots the impulse responses.

The impulse responses of the lowpass filters are symmetric with respect to the midpoint.
The impulse responses of the highpass filters are antisymmetric with respect to the
midpoint.

[LoD,HiD,LoR,HiR] = wfilters('bior3.5');
subplot(221);
stem(LoD);
title('Lowpass Analysis Filter');
subplot(222);
stem(HiD);
title('Highpass Analysis Filter');
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subplot(223);
stem(LoR);
title('Lowpass Synthesis Filter');
subplot(224);
stem(HiR);
title('Highpass Synthesis Filter');

Reverse Biorthogonal Wavelet Pairs: rbioNr.Nd

This family is obtained from the biorthogonal wavelet pairs previously described.

You can obtain a survey of the main properties of this family by typing
waveinfo('rbio') from the MATLAB command line.
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Reverse Biorthogonal Wavelet rbio1.5

Meyer Wavelet: meyr
Both ψ and φ are defined in the frequency domain, starting with an auxiliary function ν
(see [Dau92] pages 117, 119, 137, 152). By typing waveinfo('meyr') at the MATLAB
command prompt, you can obtain a survey of the main properties of this wavelet.

Meyer Wavelet

The Meyer wavelet and scaling function are defined in the frequency domain:

 Wavelet Families
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• Wavelet function

ψ (ω) = (2eiω/2sin π
2ν 3

2π ω − 1    if    2π
3 ≤ ω ≤ 4π

3

ψ (ω) = (2eiω/2cos π
2ν 3

4π ω − 1    if    4π
3 ≤ ω ≤ 8π

3

and ψ (ω) = 0   if     ω ∉ 2π
3 , 8π

3

where ν(a) = a4 35 − 84a + 70a2− 20a3      a ∈ [0, 1]

• Scaling function

ϕ (ω) = (2     if     ω ≤ 2π
3

ϕ (ω) = (2cos π
2ν 3

2π ω − 1      if    2π
3 ≤ ω ≤ 4π

3

ϕ (ω) = 0     if    ω > 4π
3

By changing the auxiliary function, you get a family of different wavelets. For the required
properties of the auxiliary function ν (see“References” for more information). This
wavelet ensures orthogonal analysis.

The function ψ does not have finite support, but ψ decreases to 0 when , faster than
any inverse polynomial

∀n ∈ Ν, ∃Cn such that ψ(x) ≤ Cn 1 + x 2 −n

This property holds also for the derivatives

∀k ∈ N, ∀n ∈ N, ∃Ck, n, such that ψ(k)x ≤ Ck, n(1 + x 2) − n

The wavelet is infinitely differentiable.

Note Although the Meyer wavelet is not compactly supported, there exists a good
approximation leading to FIR filters that you can use in the DWT. Enter
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waveinfo('dmey') at the MATLAB command prompt to obtain a survey of the main
properties of this pseudo-wavelet.

Gaussian Derivatives Family: gaus

This family is built starting from the Gaussian function f (x) = Cpe−x2 by taking the pth

derivative of  f.

The integer p is the parameter of this family and in the previous formula, Cp is such that
f (p) 2 = 1 where f (p) is the pth derivative of f.

You can obtain a survey of the main properties of this family by typing
waveinfo('gaus') from the MATLAB command line.

Gaussian Derivative Wavelet gaus8

Mexican Hat Wavelet: mexh
This wavelet is proportional to the second derivative function of the Gaussian probability
density function. The wavelet is a special case of a larger family of derivative of Gaussian
(DOG) wavelets. It is also known as the Ricker wavelet.

There is no scaling function associated with this wavelet.

Enter waveinfo('mexh') at the MATLAB command prompt to obtain a survey of the
main properties of this wavelet.

You can compute the wavelet with wavefun.

 Wavelet Families
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[psi,xval] = wavefun('mexh',10);
plot(xval,psi);
title('Mexican Hat Wavelet');

Morlet Wavelet: morl
Both real-valued and complex-valued versions of this wavelet exist. Enter
waveinfo('morl') at the MATLAB command line to obtain the properties of the real-
valued Morlet wavelet.

The real-valued Morlet wavelet is defined as:

ψ(x) = Ce−x2cos(5x)

The constant C is used for normalization in view of reconstruction.

[psi,xval] = wavefun('morl',10);
plot(xval,psi);
title('Real-valued Morlet Wavelet');
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The Morlet wavelet does not technically satisfy the admissibility condition..

Additional Real Wavelets
Some other real wavelets are available in the toolbox.

Complex Wavelets
The toolbox also provides a number of complex-valued wavelets for continuous wavelet
analysis. Complex-valued wavelets provide phase information and are therefore very
important in the time-frequency analysis of nonstationary signals.

Complex Gaussian Wavelets: cgau

This family is built starting from the complex Gaussian function

f (x) = Cpe−ixe−x2 by taking the pth derivative of f. The integer p is the parameter of this
family and in the previous formula, Cp is such that

f (p) 2 = 1 where f (p) is the pth derivative of f.
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You can obtain a survey of the main properties of this family by typing
waveinfo('cgau') from the MATLAB command line.

Complex Gaussian Wavelet cgau8

Complex Morlet Wavelets: cmor

See [Teo98] pages 62–65.

A complex Morlet wavelet is defined by

ψ(x) = 1
πfb

e2iπfcxe
x2

fb

depending on two parameters:

• fb is a bandwidth parameter.
• fc is a wavelet center frequency.

You can obtain a survey of the main properties of this family by typing
waveinfo('cmor') from the MATLAB command line.
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Complex Morlet Wavelet morl 1.5-1

Complex Frequency B-Spline Wavelets: fbsp

See [Teo98] pages 62–65.

A complex frequency B-spline wavelet is defined by

ψ(x) = fb sinc
fbx
m

m
e2iπfcx

depending on three parameters:

• m is an integer order parameter (m ≥ 1).
• fb is a bandwidth parameter.
• fc is a wavelet center frequency.

You can obtain a survey of the main properties of this family by typing
waveinfo('fbsp') from the MATLAB command line.
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Complex Frequency B-Spline Wavelet fbsp 2-0.5-1

Complex Shannon Wavelets: shan

See [Teo98] pages 62–65.

This family is obtained from the frequency B-spline wavelets by setting m to 1.

A complex Shannon wavelet is defined by

ψ(x) = fbsinc fbx e2iπfcx

depending on two parameters:

• fb is a bandwidth parameter.
• fc is a wavelet center frequency.

You can obtain a survey of the main properties of this family by typing
waveinfo('shan') from the MATLAB command line.
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Complex Shannon Wavelet shan 0.5-1
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Wavelet Families and Associated Properties — I
Property morl mexh meyr haar dbN symN coifN biorNr.Nd
Crude ■ ■       
Infinitely regular ■ ■ ■      
Arbitrary regularity     ■ ■ ■ ■
Compactly supported
orthogonal

   ■ ■ ■ ■  

Compactly supported
biorthogonal

       ■

Symmetry ■ ■ ■ ■    ■
Asymmetry     ■    
Near symmetry      ■ ■  
Arbitrary number of
vanishing moments

    ■ ■ ■ ■

Vanishing moments for
φ

      ■  

Existence of φ   ■ ■ ■ ■ ■ ■
Orthogonal analysis   ■ ■ ■ ■ ■  
Biorthogonal analysis   ■ ■ ■ ■ ■ ■
Exact reconstruction ≈ ■ ■ ■ ■ ■ ■ ■
FIR filters    ■ ■ ■ ■ ■
Continuous transform ■ ■ ■ ■ ■ ■ ■ ■
Discrete transform    ■ ■ ■ ■ ■
Fast algorithm    ■ ■ ■ ■ ■
Explicit expression ■ ■  ■    For splines

Crude wavelet — A wavelet is said to be crude when satisfying only the admissibility
condition.

Regularity — See “General Considerations” section in “Choose a Wavelet”.

Orthogonal — See “General Considerations” section in “Choose a Wavelet”.
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Biorthogonal — See “Biorthogonal Wavelet Pairs: biorNr.Nd” on page 1-9.

Vanishing moments — See “General Considerations” section in “Choose a Wavelet”.

Exact reconstruction — See “Reconstruction Filters” in the Wavelet Toolbox Getting
Started Guide.

Continuous — See “Continuous and Discrete Wavelet Transforms” in the Wavelet
Toolbox Getting Started Guide.

Discrete — See “Critically-Sampled Discrete Wavelet Transform” in the Wavelet Toolbox
Getting Started Guide.
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Wavelet Families and Associated Properties — II
Property rbioNr.Nd gaus dmey cgau cmor fbsp shan
Crude  ■  ■ ■ ■ ■
Infinitely regular  ■  ■ ■ ■ ■
Arbitrary regularity ■       
Compactly supported
orthogonal

       

Compactly supported
biorthogonal

■       

Symmetry ■ ■ ■ ■ ■ ■ ■
Asymmetry        
Near symmetry        
Arbitrary number of
vanishing moments

■       

Vanishing moments for φ        
Existence of φ ■       
Orthogonal analysis        
Biorthogonal analysis ■       
Exact reconstruction ■ ■ ≈ ■ ■ ■ ■
FIR filters ■  ■     
Continuous transform ■ ■      
Discrete transform ■  ■     
Fast algorithm ■  ■     
Explicit expression For splines ■  ■ ■ ■ ■
Complex valued    ■ ■ ■ ■
Complex continuous
transform

   ■ ■ ■ ■

FIR-based approximation   ■     
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Crude wavelet — A wavelet is said to be crude when satisfying only the admissibility
condition.

Regularity — See “General Considerations” section in “Choose a Wavelet”.

Orthogonal — See “General Considerations” section in “Choose a Wavelet”.

Biorthogonal — See “Biorthogonal Wavelet Pairs: biorNr.Nd” on page 1-9.

Vanishing moments — See “General Considerations” section in “Choose a Wavelet”.

Exact reconstruction — See “Reconstruction Filters” in the Wavelet Toolbox Getting
Started Guide.

Continuous — See “Continuous and Discrete Wavelet Transforms” in the Wavelet
Toolbox Getting Started Guide.

Discrete — See “Continuous and Discrete Wavelet Transforms” in the Wavelet Toolbox
Getting Started Guide.

FIR filters — See “Filters Used to Calculate the DWT and IDWT” on page 3-43.
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Lifting Method for Constructing Wavelets
The so-called first generation wavelets and scaling functions are dyadic dilations and
translates of a single function. Fourier methods play a key role in the design of these
wavelets. However, the requirement that the wavelet basis consist of translates and
dilates of a single function imposes some constraints that limit the utility of the
multiresolution idea at the core of wavelet analysis.

The utility of wavelet methods is extended by the design of second generation wavelets
via lifting.

Typical settings where translation and dilation of a single function cannot be used
include:

• Designing wavelets on bounded domains — This includes the construction of wavelets
on an interval, or bounded domain in a higher-dimensional Euclidean space.

• Weighted wavelets — In certain applications, such as the solution of partial differential
equations, wavelets biorthogonal with respect to a weighted inner product are needed.

• Irregularly-spaced data — In many real-world applications, the sampling interval
between data samples is not equal.

Designing new first generation wavelets requires expertise in Fourier analysis. The lifting
method proposed by Sweldens (see [Swe98] in “References”) removes the necessity of
expertise in Fourier analysis and allows you to generate an infinite number of discrete
biorthogonal wavelets starting from an initial one. In addition to generation of first
generation wavelets with lifting, the lifting method also enables you to design second
generation wavelets, which cannot be designed using Fourier-based methods. With lifting,
you can design wavelets that address the shortcomings of the first generation wavelets.

The following section introduces the theory behind lifting, presents the lifting functions of
Wavelet Toolbox software and gives two short examples:

• “Lifting Background” on page 1-25
• “Lifting Functions” on page 1-31

For more information on lifting, see [Swe98], [Mal98], [StrN96], and [MisMOP03] in
“References”.
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Lifting Background
The DWT implemented by a filter bank is defined by four filters as described in “Fast
Wavelet Transform (FWT) Algorithm” on page 3-43. Two main properties of interest are

• The perfect reconstruction property
• The link with “true” wavelets (how to generate, starting from the filters, orthogonal or

biorthogonal bases of the space of the functions of finite energy)

To illustrate the perfect reconstruction property, the following filter bank contains two
decomposition filters and two synthesis filters. The decomposition and synthesis filters
may constitute a pair of biorthogonal bases or an orthogonal basis. The capital letters
denote the Z-transforms of the filters..

This leads to the following two conditions for a perfect reconstruction (PR) filter bank:

H(z)H(z) + G (z)G(z) = 2z−L + 1

and

H( − z)H(z) + G ( − z)G(z) = 0
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The first condition is usually (incorrectly) called the perfect reconstruction condition and
the second is the anti-aliasing condition.

The z–L+1 term implies that perfect reconstruction is achieved up to a delay of one sample
less than the filter length, L. This results if the analysis filters are shifted to be causal.

Lifting designs perfect reconstruction filter banks by beginning from the basic nature of
the wavelet transform. Wavelet transforms build sparse representations by exploiting the
correlation inherent in most real world data. For example, plot the example of electricity
consumption over a 3-day period.

load leleccum;
plot(leleccum)
grid on; axis tight;

The data do not exhibit arbitrary changes from sample to sample. Neighboring samples
exhibit correlation. A relatively low (high) value at index (sample) n is associated with a
relatively low (high) value at index n-1 and n+1. This implies that if you have only the odd
or even samples from the data, you can predict the even or odd samples. How accurate
your prediction is obviously depends on the nature of the correlation between adjacent
samples and how closely your predictor approximates that correlation.
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Polyphase Representation
The polyphase representation of a signal is an important concept in lifting. You can view
each signal as consisting of phases, which consist of taking every N-th sample beginning
with some index. For example, if you index a time series from n=0 and take every other
sample starting at n=0, you extract the even samples. If you take every other sample
starting from n=1, you extract the odd samples. These are the even and odd polyphase
components of the data. Because your increment between samples is 2, there are only
two phases. If you increased your increment to 4, you can extract 4 phases. For lifting, it
is sufficient to concentrate on the even and odd polyphase components. The following
diagram illustrates this operation for an input signal.

where Z denotes the unit advance operator and the downward arrow with the number 2
represents downsampling by two. In the language of lifting, the operation of separating
an input signal into even and odd components is known as the split operation, or the lazy
wavelet.

To understand lifting mathematically, it is necessary to understand the z-domain
representation of the even and odd polyphase components.

The z-transform of the even polyphase component is

X0(z) = ∑
n

x(2n)z−n

 Lifting Method for Constructing Wavelets

1-27



The z-transform of the odd polyphase component is

X1(z) = ∑
n

x(2n + 1)z−n

You can write the z-transform of the input signal as the sum of dilated versions of the z-
transforms of the polyphase components.

X(z) = ∑
n

x(2n)z−2n + ∑
n

x(2n + 1)z−2n + 1 = X0(z2) + z−1X1(z2)

Split, Predict, and Update
A single lifting step can be described by the following three basic operations:

• Split — the signal into disjoint components. A common way to do this is to extract the
even and odd polyphase components explained in “Polyphase Representation” on page
1-27. This is also known as the lazy wavelet.

• Predict — the odd polyphase component based on a linear combination of samples of
the even polyphase component. The samples of the odd polyphase component are
replaced by the difference between the odd polyphase component and the predicted
value. The predict operation is also referred to as the dual lifting step.

• Update — the even polyphase component based on a linear combination of difference
samples obtained from the predict step. The update step is also referred to as the
primal lifting step.

In practice, a normalization is incorporated for both the primal and dual liftings.

The following diagram illustrates one lifting step.
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Haar Wavelet Via Lifting
Using the operations defined in “Split, Predict, and Update” on page 1-28, you can
implement the Haar wavelet via lifting.

• Split — Divide the signal into even and odd polyphase components.
• Predict — Replace x(2n+1) with d(n)=x(2n+1)–x(2n). The predict operator is simply

x(2n).
• Update — Replace x(2n) with x(2n)+d(n)/2. This is equal to (x(2n)+x(2n+1))/2.

The dual lifting in the z domain can be written in the following matrix form

1 0
−P(z) 1

X0(z)
X1(z)

with P(z)=1.

The primal lifting can be written in the z domain in the following matrix form
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1 S(z)
0 1

1 0
−P(z) 1

X0(z)
X1(z)

with S(z)=1/2.

Finally, the primal and dual normalization can be incorporated as follows.

2 0

0 1
2

1 S(z)
0 1

1 0
−P(z) 1

X0(z)
X1(z)

To construct this lifting step in MATLAB, enter:

LiftHaar = liftwave('haar');
displs(LiftHaar)

The following is displayed in the MATLAB command window.

LiftHaar = {...                      
'd'             [ -1.00000000]  [0]  
'p'             [  0.50000000]  [0]  
[  1.41421356]  [  0.70710678]  []   
};   

'd' denotes the dual lifting. Note that for convenience, the negative sign is incorporated
into the dual lifting step in the Wavelet Toolbox software. 'p' denotes the primal lifting
and [ 1.41421356] [ 0.70710678] are the primal and dual normalization constants.
LiftHaar{1,3} and LiftHaar{2,3} give the highest degree of the Laurent
polynomials, which describe the dual and primal liftings. In this case, both are zero
because the dual and primal liftings are both described by scalars.

Bior2.2 Wavelet Via Lifting
This example presents the lifting scheme for the bior2.2 biorthogonal scaling and
wavelet filters.

In the Haar lifting scheme, the dual lifting (predict operator) differenced the odd and
even samples. In this example, define a new predict operator that computes the average
of the two neighboring even samples. Subtract the average from the intervening odd
sample.
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d(n) = x(2n + 1) − 1
2[x(2n) + x(2n + 2)]

In the z-domain you can write the dual lifting step as

1 0

−1
2(1 + z) 1

X0(z)
X1(z)

To obtain the primal lifting, or update, examine the primal lifting in “Haar Wavelet Via
Lifting” on page 1-29. The update is defined in such a way that the sum of the
approximation coefficients is proportional to the mean of the input data vector.

∑
n

x(n) = 1
2∑n a(n)

To obtain the same result in this lifting step, define the update as

1 1
4(z−1 + 1)

0 1

1 0

−1
2(1 + z) 1

X0(z)
X1(z)

To obtain this lifting scheme at the command line, enter:

liftwave('bior2.2')

Lifting Functions
The lifting functions of the toolbox are organized into five groups:

• “Lifting Schemes” on page 1-32
• “Biorthogonal Quadruplets of Filters and Lifting Schemes” on page 1-32
• “Usual Biorthogonal Quadruplets” on page 1-32
• “Lifting Wavelet Transform (LWT)” on page 1-33
• “Laurent Polynomials and Matrices” on page 1-33
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Lifting Schemes

Function Name Description
lsinfo Information about lifting schemes
displs Display a lifting scheme
addlift Add primal or dual elementary lifting steps to a lifting

scheme
wavenames Wavelets with lifting schemes

Biorthogonal Quadruplets of Filters and Lifting Schemes

These functions connect lifting schemes to biorthogonal quadruplets of filters and
associated scaling and wavelet function pairs.

Function Name Description
liftfilt Apply elementary lifting steps on quadruplet of filters
filt2ls Transform a quadruplet of filters to a lifting scheme
ls2filt Transform a lifting scheme to a quadruplet of filters
bswfun Compute and plot biorthogonal “scaling and wavelet”

functions

Usual Biorthogonal Quadruplets

These functions provide some basic lifting schemes associated with some usual
orthogonal or biorthogonal (“true”) wavelets and the “lazy” one. These schemes can be
used to initialize a lifting procedure.

Function Name Description
wavenames Provides usual wavelet names available for LWT
liftwave Provides lifting scheme associated with a usual wavelet
wave2lp Provides Laurent polynomials associated with a usual

wavelet
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Lifting Wavelet Transform (LWT)

These functions contain the direct and inverse lifting wavelet transform (LWT) files for
both 1-D and 2-D signals. LWT reduces to the polyphase version of the DWT algorithm
with zero-padding extension mode and without extra-coefficients.

Function Name Description
lwt 1-D lifting wavelet transform
ilwt Inverse 1-D lifting wavelet transform
lwtcoef Extract or reconstruct 1-D LWT wavelet coefficients
lwt2 2-D lifting wavelet transform
ilwt2 Inverse 2-D lifting wavelet transform
lwtcoef2 Extract or reconstruct 2-D LWT wavelet coefficients

Laurent Polynomials and Matrices

These functions permit an entry to representation and calculus of Laurent polynomials
and matrices.

Function Name Description
laurpoly Constructor for the class of Laurent polynomials
laurmat Constructor for the class of Laurent matrices

The lifting folder and the two object folders @laurpoly and @laurmat contain many
other files.

Primal Lifting from Haar
These two simple examples illustrate the basic lifting capabilities of Wavelet Toolbox
software.

A primal lifting starting from Haar wavelet.

Start from the Haar wavelet and get the corresponding lifting scheme.

lshaar = liftwave('haar');
displs(lshaar);

Add a primal ELS to the lifting scheme.
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els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
displs(lsnew);

Transform the lifting scheme to biorthogonal filters quadruplet and plot the resulting
scaling function and wavelet.

[LoD,HiD,LoR,HiR] = ls2filt(lsnew);
bswfun(LoD,HiD,LoR,HiR,'plot');

Integer-to-Integer Wavelet Transform
In several applications it is desirable to have a wavelet transform that maps integer
inputs to integer scaling and wavelet coefficients. You can accomplish easily using lifting.

Start with the Haar transform for an integer to integer wavelet transform and apply a
primal lifting step.

lshaar = liftwave('haar','int2int');
els = {'p',[-0.125 0.125],0};
lsnewint = addlift(lshaar,els);

Obtain the integer-to-integer wavelet transform of a 1-D signal and invert the transform
to demonstrate perfect reconstruction.
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x = 1:8;
[cA,cD] = lwt(x,lsnewint);
xnew = ilwt(cA,cD,lsnewint)
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Orthogonal and Biorthogonal Filter Banks
This example shows to construct and use orthogonal and biorthogonal filter banks with
the Wavelet Toolbox software. The classic critically sampled two-channel filter bank is
shown in the following figure.

Let  and  denote the lowpass and highpass analysis filters and  and  denote the
corresponding lowpass and highpass synthesis filters. A two-channel critically sampled
filter bank filters the input signal using a lowpass and highpass filter. The subband
outputs of the filters are downsampled by two to preserve the overall number of samples.
To reconstruct the input, upsample by two and then interpolate the results using the
lowpass and highpass synthesis filters. If the filters satisfy certain properties, you can
achieve perfect reconstruction of the input. To demonstrate this, filter an ECG signal
using Daubechies's extremal phase wavelet with two vanishing moments. The example
explains the notion of vanishing moments in a later section.

load wecg;
plot(wecg);
title('ECG Signal')
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Obtain the lowpass (scaling) and highpass (wavelet) analysis and synthesis filters.

[gtilde,htilde,g,h] = wfilters('db2');

For this example, set the padding mode for the DWT to periodization. This does not
extend the signal.

origmodestatus = dwtmode('status','nodisplay');
dwtmode('per','nodisplay');

Obtain the level-one discrete wavelet transform (DWT) of the ECG signal. This is
equivalent to the analysis branch (with downsampling) of the two-channel filter bank in
the figure.

[lowpass,highpass] = dwt(wecg,gtilde,htilde);
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Upsample and interpolate the lowpass (scaling coefficients) and highpass (wavelet
coefficients) subbands with the synthesis filters and demonstrate perfect reconstruction.

xrec = idwt(lowpass,highpass,g,h);
max(abs(wecg-xrec))
subplot(2,1,1)
plot(wecg); title('Original ECG Waveform')
subplot(2,1,2)
plot(xrec); title('Reconstructed ECG Waveform');

ans =

   1.3658e-12
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The analysis and synthesis filters for the 'db2' wavelet are just time reverses of each
other. You can see this by comparing the following.

scalingFilters = [flip(gtilde); g]
waveletFilters = [flip(htilde); h]

scalingFilters =

    0.4830    0.8365    0.2241   -0.1294
    0.4830    0.8365    0.2241   -0.1294

waveletFilters =
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   -0.1294   -0.2241    0.8365   -0.4830
   -0.1294   -0.2241    0.8365   -0.4830

This is the case with all orthogonal wavelet filter banks. The orthogonal wavelet families
supported by the Wavelet Toolbox are 'dbN', 'fkN', 'symN', and 'coifN' where N is a valid
filter number.

Instead of providing dwt with the filters in the previous example, you the string 'db2'
instead. Using the wavelet family short name and filter number, you do not have to
correctly specify the analysis and synthesis filters.

[lowpass,highpass] = dwt(wecg,'db2');
xrec = idwt(lowpass,highpass,'db2');

The filter number in the Daubechies's extremal phase and least asymmetric phase
wavelets ('db' and 'sym') refers to the number of vanishing moments. Basically, a wavelet
with N vanishing moments removes a polynomial of order N-1 in the wavelet coefficients.
To illustrate this, construct a signal which consists of a linear trend with additive noise.

n = (0:511)/512;
x = 2*n+0.2*randn(size(n));
plot(n,x)
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A linear trend is a polynomial of degree 1. Therefore, a wavelet with two vanishing
moments removes this polynomial. The linear trend is preserved in the scaling
coefficients and the wavelet coefficients can be regarded as consisting of only noise.
Obtain the level-one DWT of the signal with the 'db2' wavelet (two vanishing moments)
and plot the coefficients.

[A,D] = dwt(x,'db2');
subplot(2,1,1)
plot(A); title('Scaling Coefficients');
subplot(2,1,2)
plot(D); title('Wavelet Coefficients');
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You can use dwt and idwt to implement a two-channel orthogonal filter bank, but it is
often more convenient to implement a multi-level two-channel filter bank using wavedec.
The multi-level DWT iterates on the output of the lowpass (scaling) filter. In other words,
the input to the second level of the filter bank is the output of the lowpass filter at level 1.
A two-level wavelet filter bank is illustrated in the following figure.
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At each successive level, the number of scaling and wavelet coefficients is downsampled
by two so the total number of coefficients are preserved. Obtain the level three DWT of
the ECG signal using the 'sym4' orthogonal filter bank.

[C,L] = wavedec(wecg,3,'sym4');

The number of coefficients by level is contained in the vector, L. The first element of L is
equal to 256, which represents the number of scaling coefficients at level 3 (the final
level). The second element of L is the number of wavelet coefficients at level 3.
Subsequent elements give the number of wavelet coefficients at higher levels until you
reach the final element of L. The final element of L is equal to the number of samples in
the original signal. The scaling and wavelet coefficients are stored in the vector C in the
same order. To extract the scaling or wavelet coefficients, use appcoef or detcoef.
Extract all the wavelet coefficients in a cell array and final-level scaling coefficients.

wavcoefs = detcoef(C,L,'dcells');
a3 = appcoef(C,L,'sym4');

You can plot the wavelet and scaling coefficients at their approximate positions.
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cfsmatrix = zeros(numel(wecg),4);
cfsmatrix(1:2:end,1) = wavcoefs{1};
cfsmatrix(1:4:end,2) = wavcoefs{2};
cfsmatrix(1:8:end,3) = wavcoefs{3};
cfsmatrix(1:8:end,4) = a3;
subplot(5,1,1)
plot(wecg); title('Original Signal');
axis tight;
for kk = 2:4
    subplot(5,1,kk)
    stem(cfsmatrix(:,kk-1),'marker','none','ShowBaseLine','off');
    ylabel(['D' num2str(kk-1)]);
    axis tight;
end
subplot(5,1,5);
stem(cfsmatrix(:,end),'marker','none','ShowBaseLine','off');
ylabel('A3'); xlabel('Sample');
axis tight;
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Because the critically sampled wavelet filter bank downsamples the data at each level, the
analysis must stop when you have only one coefficient left. In the case of the ECG signal
with 2048 samples, this must occur when .

[C,L] = wavedec(wecg,log2(numel(wecg)),'sym4');
fprintf('The number of coefficients at the final level is %d. \n',L(1));

The number of coefficients at the final level is 1. 

If you wish to implement an orthogonal wavelet filter bank without downsampling, you
can use modwt.

ecgmodwt = modwt(wecg,'sym4',3);
ecgmra = modwtmra(ecgmodwt,'sym4');
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subplot(5,1,1);
plot(wecg); title('Original Signal');

title('MODWT-Based Multiresolution Analysis');
for kk = 2:4
    subplot(5,1,kk)
    plot(ecgmra(kk-1,:));
    ylabel(['D' num2str(kk-1)]);
end
subplot(5,1,5);
plot(ecgmra(end,:));
ylabel('A3'); xlabel('Sample');
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In a biorthogonal filter bank, the synthesis filters are not simply time-reversed versions of
the analysis filters. The family of biorthogonal spline wavelet filters are an example of
such filter banks.

[LoD,HiD,LoR,HiR] = wfilters('bior3.5');

If you examine the analysis filters (LoD,HiD) and the synthesis filters (LoR,HiR), you see
that they are very different. These filter banks still provide perfect reconstruction.

[A,D] = dwt(wecg,LoD,HiD);
xrec = idwt(A,D,LoR,HiR);
max(abs(wecg-xrec))

ans =

   6.6613e-16

Biorthogonal filters are useful when linear phase is a requirement for your filter bank.
Orthogonal filters cannot have linear phase with the exception of the Haar wavelet filter.
If you have the Signal Processing Toolbox software, you can look at the phase responses
for an orthogonal and biorthogonal pair of wavelet filters.

[Lodb6,Hidb6] = wfilters('db6');
[PHIdb6,W] = phasez(Hidb6,1,512);
PHIbior35 = phasez(HiD,1,512);
figure;
subplot(2,1,1)
plot(W./(2*pi),PHIdb6); title('Phase Response for db6 Wavelet');
grid on;
xlabel('Cycles/Sample'); ylabel('Radians');
subplot(2,1,2)
plot(W./(2*pi),PHIbior35); title('Phase Response for bior3.5 Wavelet');
grid on;
xlabel('Cycles/Sample'); ylabel('Radians');
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Set the dwtmode back to the original setting.

dwtmode(origmodestatus,'nodisplay');
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Scaling Function and Wavelet
This example uses wavefun to demonstrate how the number of vanishing moments in a
biorthogonal filter pair affects the smoothness of the corresponding dual scaling function
and wavelet. While this example uses wavefun for a biorthogonal wavelet, 'bior3.7',
you can also use wavefun to obtain orthogonal scaling and wavelet functions.

First, obtain the scaling and wavelet filters and look at the number of vanishing moments
in the wavelets. This is equivalent to looking at the number of zeros at -1+i0 in the dual
filter.

[LoD,HiD,LoR,HiR] = wfilters('bior3.7');

If you have the Signal Processing Toolbox™, you can use zplane to look at the number of
zeros at -1+i0 for both the decomposition and reconstruction filters.

zplane(LoD); title('Decomposition Filter');
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figure;
zplane(LoR); title('Reconstruction Filter');
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If you zoom in on the region around -1+i0, you find there are 7 zeros in the decomposition
filter and 3 zeros in the reconstruction filter. This has important consequences for the
smoothness of the corresponding scaling functions and wavelets. For biorthogonal
wavelets, the more zeros at -1+i0 in the lowpass filter, the smoother the opposite scaling
function and wavelet is. In other words, more zeros in the decomposition filter implies a
smoother reconstruction scaling function and wavelet. Conversely, more zeros in the
reconstruction filter implies a smoother decomposition scaling function and wavelet.

Use wavefun to confirm this. For orthogonal and biorthogonal wavelets, wavefun works
by reversing the Mallat algorithm. Specifically, the algorithm starts with a single wavelet
or scaling coefficient at the coarsest resolution level and reconstructs the wavelet or
scaling function to the specified finest resolution level. Generally, 8 to 10 levels is
sufficient to get an accurate representation of the scaling function and wavelet.
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[phiD,psiD,phiR,psiR] = wavefun('bior3.7',10);
subplot(2,1,1)
plot([phiD' phiR']); grid on;
title('Bior3.7 Scaling Functions');
legend('Decomposition','Reconstruction');
subplot(2,1,2)
plot([psiD' psiR']); grid on;
title('Bior3.7 Wavelets');
legend('Decomposition','Reconstruction');

Because there are more than twice the number of zeros at -1+i0 for the lowpass
decomposition filter, the dual (reconstruction) scaling function and wavelet are much
smoother than the analysis (decomposition) scaling function and wavelet.
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Lifting a Filter Bank
This example shows how to use lifting to progressively change the properties of a perfect
reconstruction filter bank. The following figure shows the three canonical steps in lifting:
split, predict, and update.

The first step in lifting is simply to split the signal into its even- and odd-indexed samples.
These are called polyphase components and that step in the lifting process is often
referred to as the "lazy" lifting step because you really are not doing that much work. You
can do this in MATLAB by creating a "lazy" lifting scheme.

LS = liftwave('lazy');

Apply the lifting scheme to some data.

x = randn(8,1);
[ALazy,DLazy] = lwt(x,LS);

MATLAB™ indexes from 1 so ALazy contains the odd-indexed samples of x and DLazy
contains the even-indexed samples. Most explanations of lifting assume that the signal
starts with sample 0, so ALazy would be the even-indexed samples and DLazy the odd-
indexed samples. This example follows that latter convention. The "lazy" wavelet
transform treats one half of the signal as wavelet coefficients, DLazy, and the other half
as scaling coefficients, ALazy. This is perfectly consistent within the context of lifting, but
a simple split of the data does really sparsify or capture any relevant detail.

The next step in the lifting scheme is to predict the odd samples based on the even
samples. The theoretical basis for this is that most natural signals and images exhibit
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correlation among neighboring samples. Accordingly, you can "predict" the odd-indexed
samples using the even-indexed samples. The difference between your prediction and the
actual value is the "detail" in the data missed by the predictor. That missing detail
comprises the wavelet coefficients.

The prediction step is also referred to as a "dual lifting step". In equation form, you can
write the prediction step as d j(n) = d j− 1(n) − P(a j− 1) where d j− 1(n) are the wavelet
coefficients at the finer scale and a j− 1 is some number of finer-scale scaling coefficients.
P( ⋅ ) is the prediction operator.

Add a simple (Haar) dual lifting step that subtracts the even (approximation) coefficient
from the odd (detail) coefficient. In this case the prediction operator is simply
( − 1)a j− 1(n). In other words, it predicts the odd samples based on the immediately
preceding even sample.

ElemLiftStep = {'d',-1,0};

The above code says "create an elementary dual (predict) lifting step using a polynomial
in z with the highest power z0. The coefficient is -1. Update the lazy lifting scheme.

LSN = addlift(LS,ElemLiftStep,'end');

Apply the new lifting scheme to the signal.

[A,D] = lwt(x,LSN);

Note that the elements of A are identical to those in ALazy. This is expected because you
did not modify the approximation coefficients. If you look at the elements of D, you see
that they are equal to

Dnew = DLazy-ALazy;

Compare Dnew to D. Imagine an example where the signal was piecewise constant over
every two samples.

v = [1 -1 1 -1 1 -1];
u = repelem(v,2);

Apply the new lifting scheme to u.

[Au,Du] = lwt(u,LSN);
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You see that all the Du are zero. This signal has been compressed because all the
information is now contained in 6 samples instead of 12 samples. You can easily
reconstruct the original signal

urecon = ilwt(Au,Du,LSN);

In your prediction (dual lifting) step, you predicted that the adjacent odd sample in your
signal had the same value as the immediately preceding even sample. Obviously, this is
true only for trivial signals. The wavelet coefficients capture the difference between the
prediction and the actual values (at the odd samples). Finally, use the update step to
update the even samples based on differences obtained in the prediction step. In this
case, update using the following a j(n) = a j− 1(n) + d j− 1(n)/2. This replaces each even-
indexed coefficient by the arithmetic average of the even and odd coefficients. An update
step is also referred to as a primal lifting step.

elsprimal = {'p',1/2,0};
LSupdated = addlift(LSN,elsprimal,'end');

Obtain the wavelet transform of the signal with the updated lifting scheme.

[A,D] = lwt(x,LSupdated);

If you compare A to the original signal, x, you see that the signal mean is captured in the
approximation coefficients.

mean(A)

ans = -0.0131

mean(x)

ans = -0.0131

In fact, the elements of A are easily obtainable from x by the following.

n = 1;
for ii = 1:2:numel(x)
    meanz(n) = mean([x(ii) x(ii+1)]);
    n = n+1;
end

Compare meanz and A. As always, you can invert the lifting scheme to obtain a perfect
reconstruction of the data.
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xrec = ilwt(A,D,LSupdated);
max(abs(x-xrec))

ans = 2.2204e-16

It is common to add a normalization step at the end so that the energy in the signal (ℓ2

norm) is preserved as the sum of the energies in the scaling and wavelet coefficients.
Without this normalization step, the energy is not preserved.

norm(x,2)^2

ans = 11.6150

norm(A,2)^2+norm(D,2)^2

ans = 16.8091

Add the necessary normalization step.

LSscaled = LSupdated;
LSscaled(end,1:2) = {sqrt(2), sqrt(2)/2};
[A,D] = lwt(x,LSscaled);
norm(A,2)^2+norm(D,2)^2

ans = 11.6150

Now the ℓ2 norm of the signal is equal to the sum of the energies in the scaling and
wavelet coefficients. The lifting scheme you developed in this example is the Haar lifting
scheme.

The Wavelet Toolbox™ supports many commonly used lifting schemes through liftwave
with pre-defined dual, primal, and normalization steps. For example, you can obtain the
Haar lifting scheme with the following.

lshaar = liftwave('haar');

If you compare lshaar to LSUpdated, you see that our step-by-step lifting scheme
matches the Haar lifting scheme. To see that not all lifting schemes consist of single dual
and primal lifting steps, examine the lifting scheme that corresponds to the 'bior3.1'
wavelet.

lsbior3_1 = liftwave('bior3.1')

lsbior3_1=4×3 cell
    {'d'     }    {[  0.3333]}    {[       1]}
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    {'p'     }    {1x2 double}    {[       0]}
    {'d'     }    {[ -0.4444]}    {[       0]}
    {[0.4714]}    {[  2.1213]}    {0x0 double}

You can also use liftfilt if you want to start with a set of biorthogonal (or orthogonal)
scaling and wavelet filters and "lift" them to another set. For example, start with the Haar
scaling and lifting filters.

[LoD,HiD,LoR,HiR] = wfilters('haar');

Lift the Haar filters with two primal lifting steps.

twoels(1) = struct('type','p','value',...
laurpoly([0.125 -0.125],0));
twoels(2) = struct('type','p','value',...
laurpoly([0.125 -0.125],1));
[LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,HiD,LoR,HiR,twoels);

Plot the resulting scaling and wavelet functions.

[phia,psia,phis,psis,xval] = bswfun(LoDN,HiDN,LoRN,HiRN);
subplot(2,2,1)
plot(xval,phia,'r','linewidth',2);
title('Analysis Scaling Function');
axis tight;
grid on;
subplot(2,2,2)
plot(xval,phis,'linewidth',2);
axis tight;
grid on;
title('Synthesis Scaling Function');
subplot(2,2,3);
plot(xval,psia,'r','linewidth',2);
axis tight;
grid on;
title('Analysis Wavelet');
subplot(2,2,4);
plot(xval,psis,'linewidth',2);
axis tight;
grid on;
title('Synthesis Wavelet');
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If you plot the analysis and synthesis scaling functions and wavelets for the 'bior1.3'
wavelet, you see that lifting the Haar wavelet as in the previous example has essentially
provided the 'bior1.3' wavelet to within a change of sign on the synthesis wavelet.

[LoD,HiD,LoR,HiR] = wfilters('bior1.3');
[phia,psia,phis,psis,xval] = bswfun(LoD,HiD,LoR,HiR);

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

1-58



Add Quadrature Mirror and Biorthogonal Wavelet Filters
This example shows how to add an orthogonal quadrature mirror filter (QMF) pair and
biorthogonal wavelet filter quadruple to Wavelet Toolbox™. While Wavelet Toolbox™
already contains many of the most widely used orthogonal and biorthogonal wavelet
families, including the Daubechies' extremal-phase, the Daubechies' least-asymmetric
phase, the coiflet, the Fejer-Korovkin filters, and biorthogonal spline wavelets, you can
easily add your own filters and use the filter in any of the discrete wavelet or wavelet
packet algorithms.

This example adds the Beylkin(18) QMF filter pair to the toolbox and shows how to
subsequently use the filter in discrete wavelet analysis. The example then demonstrates
how to verify the necessary and sufficient conditions for the QMF pair to constitute a
scaling and wavelet filter. After the adding the QMF pair, the example adds the nearly-
orthogonal biorthogonal wavelet quadruple based on the Laplacian pyramid scheme of
Burt and Adelson (Table 8.4 on page 283 in [1]).

Adding a QMF

First, you must have some way of obtaining the coefficients. In this case, here are the
coefficients for the lowpass (scaling) Beylkin(18) filter. You only need a valid scaling filter,
wfilters creates the corresponding wavelet filter for you.

beyl = [9.93057653743539270E-02
    4.24215360812961410E-01
    6.99825214056600590E-01 
    4.49718251149468670E-01
    -1.10927598348234300E-01
    -2.64497231446384820E-01
    2.69003088036903200E-02
    1.55538731877093800E-01
    -1.75207462665296490E-02
    -8.85436306229248350E-02
    1.96798660443221200E-02
    4.29163872741922730E-02
    -1.74604086960288290E-02
    -1.43658079688526110E-02
    1.00404118446319900E-02
    1.48423478247234610E-03
    -2.73603162625860610E-03
    6.40485328521245350E-04];

Save the Beylkin(18) filter and add the new filter to the toolbox.
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save beyl beyl

Use wavemngr to add the wavelet filter to the toolbox. Define the wavelet family name
and the short name used to access the filter. Define the wavelet type to be 1. Type 1
wavelets are orthogonal wavelets in the toolbox. Because you are adding only one wavelet
in this family, define the NUMS variable input to wavemngr to be an empty string.

familyName      = 'beylkin';
familyShortName = 'beyl';
familyWaveType  = 1;
familyNums      = '';
fileWaveName    = 'beyl.mat';

Add the wavelet using wavemngr.

wavemngr('add',familyName,familyShortName,familyWaveType, ...
    familyNums,fileWaveName)

Verify that the wavelet has been added to the toolbox.

wavemngr('read')

ans = 19x35 char array
    '==================================='
    'Haar              ->->haar           '
    'Daubechies        ->->db             '
    'Symlets           ->->sym            '
    'Coiflets          ->->coif           '
    'BiorSplines       ->->bior           '
    'ReverseBior       ->->rbio           '
    'Meyer             ->->meyr           '
    'DMeyer            ->->dmey           '
    'Gaussian          ->->gaus           '
    'Mexican_hat       ->->mexh           '
    'Morlet            ->->morl           '
    'Complex Gaussian  ->->cgau           '
    'Shannon           ->->shan           '
    'Frequency B-Spline->->fbsp           '
    'Complex Morlet    ->->cmor           '
    'Fejer-Korovkin    ->->fk             '
    'beylkin           ->->beyl           '
    '==================================='
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You can now use the wavelet to analyze signals or images. For example, load an ECG
signal and obtain the MODWT of the signal down to level four using the Beylkin(18) filter.

load wecg
wtecg = modwt(wecg,'beyl',4);

Load a box image, obtain the 2-D DWT using the Beylkin(18) filter. Show the level-one
diagonal detail coefficients.

load xbox
[C,S] = wavedec2(xbox,1,'beyl');
[H,V,D] = detcoef2('all',C,S,1);
subplot(2,1,1)
imagesc(xbox)
axis off
title('Original Image')
subplot(2,1,2)
imagesc(D)
axis off
title('Level-One Diagonal Coefficients')
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Finally, verify that the new filter satisfies the conditions for an orthogonal QMF pair.
Obtain the scaling (lowpass) and wavelet (highpass) filters.

[Lo,Hi] = wfilters('beyl');

Sum the lowpass filter coefficients to verify that the sum equals 2. Sum the wavelet filter
coefficients and verify that the sum is 0.

sum(Lo)

ans = 1.4142

sum(Hi)

ans = -1.9873e-16
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Verify that the autocorrelation of the scaling and wavelet filters at all even nonzero lags is
0. You must have the Signal Processing Toolbox™ to use xcorr.

[Clow,lags] = xcorr(Lo,Lo,10);
Chigh = xcorr(Hi,Hi,10);
subplot(2,1,1)
stem(lags,Clow,'markerfacecolor',[0 0 1])
grid on;
title('Autocorrelation of Scaling Filter');
subplot(2,1,2)
stem(lags,Chigh,'markerfacecolor',[0 0 1])
grid on;
title('Autocorrelation of Wavelet Filter');

 Add Quadrature Mirror and Biorthogonal Wavelet Filters

1-63



Note that the autocorrelation values in both plots is zero for nonzero even lags. Show that
the cross-correlation of the scaling and wavelet filter is zero at all even lags.

[xcr,lags] = xcorr(Lo,Hi,10);
figure
stem(lags,xcr,'markerfacecolor',[0 0 1]);
title('Cross-correlation of QMF filters')

The final criterion states the sum of squared magnitudes of the Fourier transforms of
scaling and wavelet filters at each frequency is equal to 2. In other words, let G(f ) be the
Fourier transform of the scaling filter and H(f ) be the Fourier transform of the wavelet
filter. The following holds for all f : H(f ) 2 + G(f ) 2 = 2. The DFT version of this equality
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is: G2mkmodN
2 + H2mkmodN

2 = 2 for any m. Check this for the Beylkin(18) filter with
m = 0.

N = numel(Lo);
LoDFT = fft(Lo);
HiDFT = fft(Hi);
k = 0:N-1;
m = 0;
sumDFTmags = abs(LoDFT(1+mod(2^m*k,N))).^2+abs(HiDFT(1+mod(2^m*k,N))).^2

sumDFTmags = 18×1

    2.0000
    2.0000
    2.0000
    2.0000
    2.0000
    2.0000
    2.0000
    2.0000
    2.0000
    2.0000
      ⋮

All the values are equal to 2 as expected. To understand why these filters are called
quadrature mirror filters, visualize the squared-magnitude frequency responses of the
scaling and wavelet filters.

nfft = 512;
F = 0:1/nfft:1/2;
LoDFT = fft(Lo,nfft);
HiDFT = fft(Hi,nfft);
figure
plot(F,abs(LoDFT(1:nfft/2+1)).^2,'DisplayName','Scaling Filter');
hold on
plot(F,abs(HiDFT(1:nfft/2+1)).^2,'r','DisplayName','Wavelet Filter');
xlabel('Frequency'); ylabel('Squared Magnitude')
title('Beylkin(18) QMF Filter Pair')
grid on
plot([1/4 1/4], [0 2],'k','HandleVisibility','off');
legend show;
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Note the magnitude responses are symmetric, or mirror images, of each other around the
quadrature frequency of 1/4.

The following code removes the Beylkin(18) wavelet filter.

wavemngr('del',familyShortName);
delete('beyl.mat')

Adding a Biorthogonal Wavelet

Adding a biorthogonal wavelet to the toolbox is similar to adding a QMF. You provide valid
lowpass (scaling) filters pair used in analysis and synthesis. The wfilters function will
generate the highpass filters.
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To be recognized by wfilters, the analysis scaling filter must be assigned to the
variable Df, and the synthesis scaling filter must be assigned to the variable Rf. The
biorthogonal scaling filters do not have to be of even equal length. The output
biorthogonal filter pairs created will have even equal lengths. Here are the scaling
function pairs of the nearly-orthogonal biorthogonal wavelet quadruple based on the
Laplacian pyramid scheme of Burt and Adelson.

Df = [-1 5 12 5 -1]/20*sqrt(2);
Rf = [-3 -15 73 170 73 -15 -3]/280*sqrt(2);

Save the filters to a .mat file.

save burt Df Rf

Use wavemngr to add the biorthogonal wavelet filters to the toolbox. Define the wavelet
family name and the short name used to access the filter. Since the wavelets are
biorthogonal, set the wavelet type to be 2. Because you are adding only one wavelet in
this family, define the NUMS variable input to wavemngr to be an empty string.

familyName      = 'burtAdelson';
familyShortName = 'burt';
familyWaveType  = 2;
familyNums      = '';
fileWaveName    = 'burt.mat';
wavemngr('add',familyName,familyShortName,familyWaveType,...
    familyNums,fileWaveName)

Verify that the biorthogonal wavelet has been added to the toolbox.

wavemngr('read')

ans = 19x35 char array
    '==================================='
    'Haar              ->->haar           '
    'Daubechies        ->->db             '
    'Symlets           ->->sym            '
    'Coiflets          ->->coif           '
    'BiorSplines       ->->bior           '
    'ReverseBior       ->->rbio           '
    'Meyer             ->->meyr           '
    'DMeyer            ->->dmey           '
    'Gaussian          ->->gaus           '
    'Mexican_hat       ->->mexh           '
    'Morlet            ->->morl           '
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    'Complex Gaussian  ->->cgau           '
    'Shannon           ->->shan           '
    'Frequency B-Spline->->fbsp           '
    'Complex Morlet    ->->cmor           '
    'Fejer-Korovkin    ->->fk             '
    'burtAdelson       ->->burt           '
    '==================================='

You can now use the wavelet within the toolbox. Create an analysis DWT filter bank using
the burt wavelet. Confirm the DWT filter bank is biorthogonal. Plot the magnitude
frequency responses of the wavelet bandpass filters and coarsest resolution scaling
function.

fb = dwtfilterbank('Wavelet','burt');
isBiorthogonal(fb)

ans = logical
   1

freqz(fb)
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Obtain the wavelet and scaling functions of the filter bank. Plot the wavelet and scaling
functions at the coarsest scale.

[fb_phi,t] = scalingfunctions(fb);
[fb_psi,~] = wavelets(fb);
subplot(2,1,1)
plot(t,fb_phi(end,:))
axis tight
grid on
title('Analysis - Scaling')
subplot(2,1,2)
plot(t,fb_psi(end,:))
axis tight
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grid on
title('Analysis - Wavelet')

Create a synthesis DWT filter bank using the burt wavelet. Compute the framebounds.

fb2 = dwtfilterbank('Wavelet','burt','FilterType','Synthesis','Level',4);
[synthesisLowerBound,synthesisUpperBound] = framebounds(fb2)

synthesisLowerBound = 0.9800

synthesisUpperBound = 1.0509

Obtain the lowpass and highpass analysis and synthesis filters associated with burt. Note
the output filters are all of equal even length. Confirm the lowpass filter coefficients sum
to sqrt(2) and the highpass filter coefficients sum to 0.
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[LoD,HiD,LoR,HiR] = wfilters('burt');
[LoD' HiD' LoR' HiR']

ans = 8×4

         0    0.0152   -0.0152         0
         0   -0.0758   -0.0758         0
   -0.0707   -0.3687    0.3687   -0.0707
    0.3536    0.8586    0.8586   -0.3536
    0.8485   -0.3687    0.3687    0.8485
    0.3536   -0.0758   -0.0758   -0.3536
   -0.0707    0.0152   -0.0152   -0.0707
         0         0         0         0

sum([(LoD'/sqrt(2)) HiD' (LoR'/sqrt(2)) HiR'])

ans = 1×4

    1.0000   -0.0000    1.0000         0

Remove the Burt-Adelson filter from the Toolbox.

wavemngr('del',familyShortName);
delete('burt.mat')

References
[1] Daubechies, I. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in

Applied Mathematics. Philadelphia, PA: Society for Industrial and Applied
Mathematics, 1992.

 Add Quadrature Mirror and Biorthogonal Wavelet Filters

1-71



Least Asymmetric Wavelet and Phase
For a given support, the orthogonal wavelet with a phase response that most closely
resembles a linear phase filter is called least asymmetric. Symlets are examples of least
asymmetric wavelets. They are modified versions of the classic Daubechies db wavelets.
In this example you will show that the order 4 symlet has a nearly linear phase response,
while the order 4 Daubechies wavelet does not.

First plot the order 4 symlet and order 4 Daubechies scaling functions. While neither is
perfectly symmetric, note how much more symmetric the symlet is.

[phi_sym,~,xval_sym]=wavefun('sym4',10);
[phi_db,~,xval_db]=wavefun('db4',10);
subplot(2,1,1)
plot(xval_sym,phi_sym)
title('sym4 - Scaling Function')
grid on
subplot(2,1,2)
plot(xval_db,phi_db)
title('db4 - Scaling Function')
grid on
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Generate the filters associated with the order 4 symlet and Daubechies wavelets.

scal_sym = symaux(4,sqrt(2));
scal_db = dbaux(4,sqrt(2));

Compute the frequency response of the scaling synthesis filters.

[h_sym,w_sym] = freqz(scal_sym);
[h_db,w_db] = freqz(scal_db);

To avoid visual discontinuities, unwrap the phase angles of the frequency responses and
plot them. Note how well the phase angle of the symlet filter approximates a straight line.

h_sym_u = unwrap(angle(h_sym));
h_db_u = unwrap(angle(h_db));
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figure
plot(w_sym/pi,h_sym_u,'.')
hold on
plot(w_sym([1 end])/pi,h_sym_u([1 end]),'r')
grid on
xlabel('Normalized Frequency ( x \pi rad/sample)')
ylabel('Phase (radians)')
legend('Phase Angle of Frequency Response','Straight Line')
title('Symlet Order 4 - Phase Angle')

figure
plot(w_db/pi,h_db_u,'.')
hold on
plot(w_db([1 end])/pi,h_db_u([1 end]),'r')
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grid on
xlabel('Normalized Frequency ( x \pi rad/sample)')
ylabel('Phase (radians)')
legend('Phase Angle of Frequency Response','Straight Line')
title('Daubechies Order 4 - Phase Angle')

The sym4 and db4 wavelets are not symmetric, but the biorthogonal wavelet is. Plot the
scaling function associated with the bior3.5 wavelet. Compute the frequency response
of the synthesis scaling filter for the wavelet and verify that it has linear phase.

[~,~,phi_bior_r,~,xval_bior]=wavefun('bior3.5',10);
figure
plot(xval_bior,phi_bior_r)
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title('bior3.5 - Scaling Function')
grid on

[LoD_bior,HiD_bior,LoR_bior,HiR_bior] = wfilters('bior3.5');
[h_bior,w_bior] = freqz(LoR_bior);
h_bior_u = unwrap(angle(h_bior));
figure
plot(w_bior/pi,h_bior_u,'.')
hold on
plot(w_bior([1 end])/pi,h_bior_u([1 end]),'r')
grid on
xlabel('Normalized Frequency ( x \pi rad/sample)')
ylabel('Phase (radians)')
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legend('Phase Angle of Frequency Response','Straight Line')
title('Biorthogonal 3.5 - Phase Angle')

See Also
dbaux | symaux

 See Also
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1-D Continuous Wavelet Analysis

Note

This page is no longer recommended. See “Continuous and Discrete Wavelet
Transforms”.

The Wavelet Toolbox software enables you to perform a continuous wavelet analysis of
your univariate or bivariate 1-D input signals. You can perform continuous wavelet
analyses at the command line or with the app which you access by typing
waveletAnalyzer at the command line.

Key features include:

• Continuous wavelet transform (CWT) of a 1-D input signal using real-valued and
complex-valued wavelets. The Wavelet Toolbox software features a CWT algorithm,
cwt, which is based on the correlation of the signal with an analyzing analytic
wavelet, .

• Inverse CWT of 1–D input signal. For select analyzing wavelets, you can invert the
CWT to reconstruct a time and scale-localized approximation to your input signal. See
icwt for details.

• Wavelet cross spectrum and coherence. You can use wcoherence to compute the
wavelet cross spectrum and coherence between two time series. The wavelet cross
spectrum and coherence can reveal localized similarities between two time series in
time and scale. See “Compare Time-Frequency Content in Signals with Wavelet
Coherence” for examples.

In this section, you'll learn how to

• Load a signal
• Perform a continuous wavelet transform of a signal
• Produce a plot of the coefficients
• Produce a plot of coefficients at a given scale
• Produce a plot of local maxima of coefficients across scales
• Select the displayed plots
• Switch from scale to pseudo-frequency information
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• Zoom in on detail
• Display coefficients in normal or absolute mode
• Choose the scales at which analysis is performed

Since you can perform analyses either from the command line or using the Wavelet
Analyzer app, this section has subsections covering each method.

The final subsection discusses how to exchange signal and coefficient information
between the disk and the graphical tools.
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Continuous Wavelet Analysis of Noisy Sinusoid Using
Command Line Functions

This example involves a noisy sinusoidal signal.

1 Load a signal.

From the MATLAB prompt, type

load noissin; 

You now have the signal noissin in your workspace:

whos

2 Continuous Wavelet Analysis
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Name Size Bytes Class
noissin 1x1000 8000 double array

2 Perform a Continuous Wavelet Transform.

Use the cwt command. Type

c = cwt(noissin);

The arguments to cwt specify the signal to be analyzed. The returned argument c
contains the coefficients at various scales. In this case, c is a 80-by-1000 matrix with
each row corresponding to a single scale.

3 Plot the coefficients.

The cwt command accepts a fourth argument. This is a flag that, when present,
causes cwt to produce a plot of the absolute values of the continuous wavelet
transform coefficients.

The cwt command can accept more arguments to define the different characteristics
of the produced plot. For more information, see the cwt reference page.

c = cwt(noissin,1:48,'db4','plot');

A plot appears.
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Of course, coefficient plots generated from the command line can be manipulated
using ordinary MATLAB graphics commands.

4 Choose scales for the analysis.

The second argument to cwt gives you fine control over the scale levels on which the
continuous analysis is performed. In the previous example, we used all scales from 1
to 48, but you can construct any scale vector subject to these constraints:

• All scales must be real positive numbers.
• The scale increment must be positive.
• The highest scale cannot exceed a maximum value depending on the signal.

2 Continuous Wavelet Analysis
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Let's repeat the analysis using every other scale from 2 to 128. Type

c = cwt(noissin,2:2:128,'db4','plot');

A new plot appears:

This plot gives a clearer picture of what's happening with the signal, highlighting the
periodicity.
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Continuous Wavelet Analysis of Noisy Sinusoid Using
the Wavelet Analyzer App

This example shows how to use Continuous Wavelet 1-D tool to analyze a noisy
sinusoidal signal.

1 Start the Continuous Wavelet 1-D Tool. From the MATLAB prompt, type

waveletAnalyzer

The Wavelet Analyzer appears.

Click the Continuous Wavelet 1-D menu item.

The continuous wavelet analysis tool for 1-D signal data appears.

2 Continuous Wavelet Analysis
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2 Load a signal.

At the MATLAB command prompt, type

load noissin;

In the Continuous Wavelet 1-D tool, select File > Import from Workspace. When
the Import from Workspace dialog box appears, select the noissin variable. Click
OK to import the noisy sinusoid signal.

The default value for the sampling period is equal to 1 (second).
3 Perform a Continuous Wavelet Transform.

To start our analysis, let's perform an analysis using the db4 wavelet at scales 1
through 48, just as we did using command line functions in the previous section.

 Continuous Wavelet Analysis of Noisy Sinusoid Using the Wavelet Analyzer App
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In the upper right portion of the Continuous Wavelet 1-D tool, select the db4
wavelet and scales 1–48.

4 Click the Analyze button.

After a pause for computation, the tool displays the coefficients plot, the coefficients
line plot corresponding to the scale a = 24, and the local maxima plot, which displays
the chaining across scales (from a = 48 down to a = 1) of the coefficients local
maxima.

2 Continuous Wavelet Analysis
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5 View Wavelet Coefficients Line.

Select another scale a = 40 by clicking in the coefficients plot with the right mouse
button. See step 9 to know, more precisely, how to select the desired scale.

Click the New Coefficients Line button. The tool updates the plot.

6 View Maxima Line.

Click the Refresh Maxima Line button. The local maxima plot displays the chaining
across scales of the coefficients local maxima from a = 40 down to a = 1.
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Hold down the right mouse button over the coefficients plot. The position of the
mouse is given by the Info frame (located at the bottom of the screen) in terms of
location (X) and scale (Sca).

2 Continuous Wavelet Analysis
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7 Switch from scale to Pseudo-Frequency Information.

Using the option button on the right part of the screen, select Frequencies instead
of Scales. Again hold down the right mouse button over the coefficients plot, the
position of the mouse is given in terms of location (X) and frequency (Frq) in Hertz.
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This facility allows you to interpret scale in terms of an associated pseudo-frequency,
which depends on the wavelet and the sampling period..

8 Deselect the last two plots using the check boxes in the Selected Axes frame.

2 Continuous Wavelet Analysis
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9 Zoom in on detail.

Drag a rubber band box (by holding down the left mouse button) over the portion of
the signal you want to magnify.
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10 Click the X+ button (located at the bottom of the screen) to zoom horizontally only.

The Continuous Wavelet 1-D tool enlarges the displayed signal and coefficients plot
(for more information on zooming, see “Connection of Plots” on page A-3 in the
Wavelet Toolbox User's Guide).
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As with the command line analysis on the preceding pages, you can change the scales
or the analyzing wavelet and repeat the analysis. To do this, just edit the necessary
fields and click the Analyze button.

11 View normal or absolute coefficients.

The Continuous Wavelet 1-D tool allows you to plot either the absolute values of
the wavelet coefficients, or the coefficients themselves.
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More generally, the coefficients coloration can be done in several different ways. For
more details on the Coloration Mode, see “Controlling the Coloration Mode” on page
A-8.

Choose either one of the absolute modes or normal modes from the Coloration
Mode menu. In normal modes, the colors are scaled between the minimum and
maximum of the coefficients. In absolute modes, the colors are scaled between zero
and the maximum absolute value of the coefficients.
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Importing and Exporting Information from the Wavelet
Analyzer App

The Continuous Wavelet 1-D tool in the Wavelet Analyzer app lets you import information
from and export information to disk.

You can

• Load signals from disk into the Continuous Wavelet 1-D tool.
• Save wavelet coefficients from the Continuous Wavelet 1-D tool to disk.

Loading Signals
To load a signal you have constructed in your MATLAB workspace into the Continuous
Wavelet 1-D tool, save the signal in a MAT-file (with extension mat or other).

For instance, suppose you've designed a signal called warma and want to analyze it in the
Continuous Wavelet 1-D tool.

save warma warma

The workspace variable warma must be a vector.

sizwarma = size(warma)

sizwarma =
           1     1000

To load this signal into the Continuous Wavelet 1-D tool, use the menu option File >
Load Signal. A dialog box appears that lets you select the appropriate MAT-file to be
loaded.

Note The first one-dimensional variable encountered in the file is considered the signal.
Variables are inspected in alphabetical order.

Saving Wavelet Coefficients
The Continuous Wavelet 1-D tool lets you save wavelet coefficients to disk. The toolbox
creates a MAT-file in the current folder with the extension wc1 and a name you give it.
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To save the continuous wavelet coefficients from the present analysis, use the menu
option File > Save > Coefficients.

A dialog box appears that lets you specify a folder and filename for storing the
coefficients.

Consider the example analysis:

File > Example Analysis > with haar at scales [1:1:64] → Cantor curve.

After saving the continuous wavelet coefficients to the file cantor.wc1, load the
variables into your workspace:

load cantor.wc1 -mat
whos

Name Size Bytes Class
coefs 64x2188 1120256 double array
scales 1x64 512 double array
wname 1x4 8 char array

Variables coefs and scales contain the continuous wavelet coefficients and the
associated scales. More precisely, in the above example, coefs is a 64-by-2188 matrix,
one row for each scale; and scales is the 1-by-64 vector 1:64. Variable wname contains
the wavelet name.
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Morse Wavelets
In this section...
“What Are Morse Wavelets?” on page 2-21
“Morse Wavelet Parameters” on page 2-22
“Effect of Parameter Values on Morse Wavelet Shape” on page 2-22
“Relationship Between Analytic Morse Wavelet and Analytic Signal” on page 2-24
“Comparison of Analytic Wavelet Transform and Analytic Signal Coefficients” on page 2-
25
“Recommended Morse Wavelet Settings for the CWT” on page 2-30
“References” on page 2-31

What Are Morse Wavelets?
Generalized Morse wavelets are a family of exactly analytic wavelets. Analytic wavelets
are complex-valued wavelets whose Fourier transforms are supported only on the positive
real axis. They are useful for analyzing modulated signals, which are signals with time-
varying amplitude and frequency. They are also useful for analyzing localized
discontinuities. The seminal paper for generalized Morse wavelets is Olhede and Walden
[1]. The theory of Morse wavelets and their applications to the analysis of modulated
signals is further developed in a series of papers by Lilly and Olhede [2], [3], and [4].
Efficient algorithms for the computation of Morse wavelets and their properties were
developed by Lilly [5].

The Fourier transform of the generalized Morse wavelet is

ΨP, γ(ω) = U(ω)aP, γω
P2
γ e−ωγ

where U(ω) is the unit step, ap, γ is a normalizing constant, P2 is the time-bandwidth
product, and γ characterizes the symmetry of the Morse wavelet. Much of the literature
about Morse wavelets uses β, which can be viewed as a decay or compactness parameter,
rather than the time-bandwidth product, P2 = βγ. The equation for the Morse wavelet in
the Fourier domain parameterized by β and γ is

Ψβ, γ(ω) = U(ω)aβ, γωβe−ωγ
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For a detailed explanation of the parameterization of Morse wavelets, see [2].

By adjusting the time-bandwidth product and symmetry parameters of a Morse wavelet,
you can obtain analytic wavelets with different properties and behavior. A strength of
Morse wavelets is that many commonly used analytic wavelets are special cases of a
generalized Morse wavelet. For example, Cauchy wavelets have γ = 1 and Bessel
wavelets are approximated by β = 8 and γ = 0.25.

Morse Wavelet Parameters
As previously mentioned, Morse wavelets have two parameters, symmetry and time-
bandwidth product, which determine the wavelet shape and affect the behavior of the
transform. The Morse wavelet gamma parameter, γ, controls the symmetry of the wavelet
in time through the demodulate skewness [2]. The square root of the time-bandwidth
product, P, is proportional to the wavelet duration in time. For convenience, the Morse
wavelets in cwt and cwtfilterbank are parameterized as the time-bandwidth product
and gamma. The duration determines how many oscillations can fit into the time-domain

wavelet’s center window at its peak frequency. The peak frequency is P2

γ

1
γ
.

The (demodulate) skewness of the Morse wavelet is equal to 0 when gamma is equal to 3.
The Morse wavelets also have the minimum Heisenberg area when gamma is equal to 3.
For these reasons, cwt and cwtfilterbank use this as the default value.

Effect of Parameter Values on Morse Wavelet Shape
These plots show how different values of symmetry and time-bandwidth affect the shape
of a Morse wavelet. Longer time-bandwidths broaden the central portion of the wavelet
and increase the rate of the long time decay. Increasing the symmetry broadens the
wavelet envelope, but does not affect the long time decay. For symmetry values less than
or equal to 3, the time decay increases as the time-bandwidth increases. For symmetry
greater than or equal to 3, reducing the time-bandwidth makes the wavelet less
symmetric. As both symmetry and time-bandwidth increase, the wavelet oscillates more
in time and narrows in frequency. Very small time-bandwidth and large symmetry values
produce undesired time-domain sidelobes and frequency-domain asymmetry.

In the time-domain plots in the left column, the red line is the real part and the blue line
is the imaginary part. The contour plots in the right column show how the parameters
affect the spread in time and frequency.
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Relationship Between Analytic Morse Wavelet and Analytic
Signal
The coefficients from a wavelet transform using an analytic wavelet on a real signal are
proportional to the coefficients of the corresponding analytic signal. An analytic signal is
defined as the inverse Fourier transform of

x a(ω) = x (ω) + sgn(ω)x (ω)

The value of the analytic signal depends on ω.
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• For ω > 0, the Fourier transform of an analytic signal is two times the Fourier
transform of the corresponding nonanalytic signal,x (ω).

• For ω = 0, the Fourier transform of an analytic signal is equal to the Fourier transform
of the corresponding nonanalytic signal.

• For ω < 0, the Fourier transform of an analytic signal vanishes.

Let Wf (u, s) denote the wavelet transform of a signal, f(t), at translation u and scale s. If
the analyzing wavelet is analytic, you obtain Wf (u, s) = 1

2Wfa(u, s), where fa(t) is the
analytic signal corresponding to f(t). For all wavelets used in cwt, the amplitude of the
wavelet bandpass filter at the peak frequency for each scale is set to 2. Additionally, cwt
uses L1 normalization. For a real-valued sinusoidal input with radian frequency ω0 and
amplitude A, the wavelet transform using an analytic wavelet yields coefficients that
oscillate at the same frequency, ω0, with an amplitude equal to A

2 ψ (sω0). By isolating the

coefficients at the scale, 
ωψ
ω0

, a peak magnitude of 2 assures that the analyzed oscillatory

component has the correct amplitude, A.

Comparison of Analytic Wavelet Transform and Analytic Signal
Coefficients
This example shows how the analytic wavelet transform of a real signal approximates the
corresponding analytic signal.

This is demonstrated using a sine wave. If you obtain the wavelet transform of a sine
wave using an analytic wavelet and extract the wavelet coefficients at a scale
corresponding to the frequency of the sine wave, the coefficients approximate the analytic
signal. For a sine wave, the analytic signal is a complex exponential of the same
frequency.

Create a sinusoid with a frequency of 50 Hz.

t = 0:.001:1;
x = cos(2*pi*50*t);

Obtain its continuous wavelet transform using an analytic Morse wavelet and the analytic
signal. You must have the Signal Processing Toolbox™ to use hilbert.

[wt,f] = cwt(x,1000,'voices',32,'ExtendSignal',false);
analytsig = hilbert(x);
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Obtain the wavelet coefficients at the scale closest to the sine wave's frequency of 50 Hz.

[~,idx] = min(abs(f-50));
morsecoefx = wt(idx,:);

Compare the real and imaginary parts of the analytic signal with the wavelet coefficients
at the signal frequency.

figure;
plot(t,[real(morsecoefx)' real(analytsig)']);
title('Real Parts'); 
ylim([-2 2]); grid on;
legend('Wavelet Coefficients','Analytic Signal','Location','SouthEast');
xlabel('Time'); ylabel('Amplitude');
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figure;
plot(t,[imag(morsecoefx)' imag(analytsig)']);
title('Imaginary Parts'); 
ylim([-2 2]); grid on;
legend('Wavelet Coefficients','Analytic Signal','Location','SouthEast');
xlabel('Time'); ylabel('Amplitude');

cwt uses L1 normalization and scales the wavelet bandpass filters to have a peak
magnitude of 2. The factor of 1/2 in the above equation is canceled by the peak magnitude
value.
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The wavelet transform represents a frequency-localized filtering of the signal.
Accordingly, the CWT coefficients are less sensitive to noise than are the Hilbert
transform coefficients.

Add highpass noise to the signal and reexamine the wavelet coefficients and the analytic
signal.

y = x + filter(1,[1 0.9],0.1*randn(size(x)));
analytsig = hilbert(y);
[wt,f] = cwt(y,1000,'voices',32,'ExtendSignal',0);
morsecoefy = wt(idx,:);

figure;
plot(t,[real(analytsig)' x']);
legend('Analytic Signal','Original Signal');
grid on;
xlabel('Time'); ylabel('Amplitude');
ylim([-2 2])
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figure;
plot(t,[real(morsecoefy)' x']);
legend('Wavelet Coefficients','Original Signal');
grid on;
xlabel('Time'); ylabel('Amplitude');
ylim([-2 2])
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Recommended Morse Wavelet Settings for the CWT
For the best results when using the CWT, use a symmetry, γ, of 3, which is the default for
cwt and cwtfilterbank. With gamma fixed, increasing the time-bandwidth product P2

narrows the wavelet filter in frequency while increasing the width of the central portion
of the filter in time. It also increases the number of oscillations of the wavelet under the
central portion of the filter.
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Boundary Effects and the Cone of Influence
This topic explains the cone of influence (COI) and the convention Wavelet Toolbox™ uses
to compute it. The topic also explains how to interpret the COI in the scalogram plot, and
exactly how the COI is computed in cwtfilterbank and cwt.

Load the Kobe earthquake seismograph signal. Plot the scalogram of the Kobe earthquake
seismograph signal. The data is sampled at 1 hertz.

load kobe
cwt(kobe,1)
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In addition to the scalogram, the plot also features a dashed white line and shaded gray
regions from the edge of the white line to the time and frequency axes. Plot the same data
using the sampling interval instead of sampling rate. Now the scalogram is displayed in
periods instead of frequency.

cwt(kobe,seconds(1))

The orientation of the dashed white line has flipped upside down, but the line and the
shaded regions are still present.

The white line marks what is known as the cone of influence. The cone of influence
includes the line and the shaded region from the edge of the line to the frequency (or
period) and time axes. The cone of influence shows areas in the scalogram potentially
affected by edge-effect artifacts. These are effects in the scalogram that arise from areas
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where the stretched wavelets extend beyond the edges of the observation interval. Within
the unshaded region delineated by the white line, you are sure that the information
provided by the scalogram is an accurate time-frequency representation of the data.
Outside the white line in the shaded region, information in the scalogram should be
treated as suspect due to the potential for edge effects.

CWT of Centered Impulse

To begin to understand the cone of influence, create a centered impulse signal of length
1024 samples. Create a CWT filter bank using cwtfilterbank with default values. Use
wt to return the CWT coefficients and frequencies of the impulse. For better visualization,
normalize the CWT coefficients so that the maximum absolute value at each frequency
(for each scale) is equal to 1.

x = zeros(1024,1);
x(512) = 1;
fb = cwtfilterbank;
[cfs,f] = wt(fb,x);
cfs = cfs./max(cfs,[],2);

Use the helper function helperPlotScalogram to the scalogram. The code for
helperPlotFunction is at the end of this example. Mark the location of the impulse
with a line.

ax = helperPlotScalogram(f,cfs);
hl = line(ax,[512 512],[min(f) max(f)],...
    [max(abs(cfs(:))) max(abs(cfs(:)))]);
title('Scalogram of Centered Impulse')
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The solid black line shows the location of the impulse in time. Note that as the frequency
decreases, the width of the CWT coefficients in time that are nonzero and centered on the
impulse increases. Conversely, as the frequency increases, the width of the CWT
coefficients that are nonzero decreases and becomes increasingly centered on the
impulse. Low frequencies correspond to wavelets of longer scale, while higher
frequencies correspond to wavelets of shorter scale. The effect of the impulse persists
longer in time with longer wavelets. In other words, the longer the wavelet, the longer the
duration of influence of the signal. For a wavelet centered at a certain point in time,
stretching or shrinking the wavelet results in the wavelet "seeing" more or less of the
signal. This is referred to as the wavelet's cone of influence.
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Boundary Effects

The previous section illustrates the cone of influence for an impulse in the center of the
observation, or data interval. But what happens when the wavelets are located near the
beginning or end of the data? In the wavelet transform, we not only dilate the wavelet,
but also translate it in time. Wavelets near the beginning or end of the data inevitably
"see" data outside the observation interval. Various techniques are used to compensate
for the fact that the wavelet coefficients near the beginning and end of the data are
affected by the wavelets extending outside the boundary. The cwtfilterbank and cwt
functions offer the option to treat the boundaries by reflecting the signal symmetrically or
periodically extending it. However, regardless of which technique is used, you should
exercise caution when interpreting wavelet coefficients near the boundaries because the
wavelet coefficients are affected by values outside the extent of the signal under
consideration. Further, the extent of the wavelet coefficients affected by data outside the
observation interval depends on the scale (frequency). The longer the scale, the larger the
cone of influence.

Repeat the impulse example, but place two impulses, one at the beginning of the data and
one at the end. Also return the cone of influence. For better visualization, normalize the
CWT coefficients so that the maximum absolute value at each frequency (for each scale) is
equal to 1.

dirac = zeros(1024,1);
dirac([1 1024]) = 1;
[cfs,f,coi] = wt(fb,dirac);
cfs = cfs./max(cfs,[],2);
helperPlotScalogram(f,cfs)
title('Scalogram of Two-Impulse Signal')
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Here it is clear that the cone of influence for the extreme boundaries of the observation
interval extends into the interval to a degree that depends on the scale of the wavelet.
Therefore, wavelet coefficients well inside the observation interval can be affected by
what data the wavelet sees at the boundaries of the signal, or even before the signal's
actual boundaries if you extend the signal in some way.

In the previous figure, you should already see a striking similarity between the cone of
influence returned by cwtfilterbank or plotted by the cwt function and areas where
the scalogram coefficients for the two-impulse signal are nonzero.

While it is important to understand these boundary effects on the interpretation of
wavelet coefficients, there is no mathematically precise rule to determine the extent of
the cone of influence at each scale. Nobach et al. [2] define the extent of the cone of
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influence at each scale as the point where the wavelet transform magnitude decays to 2%
of its peak value. Because many of the wavelets used in continuous wavelet analysis decay
exponentially in time, Torrence and Compo [3] use the time constant 1/e to delineate the
borders of the cone of influence at each scale. For Morse wavelets, Lilly [1] uses the
concept of the "wavelet footprint," which is the time interval that encompasses
approximately 95% of the wavelet's energy. Lilly delineates the COI by adding 1/2 the
wavelet footprint to the beginning of the observation interval and subtracting 1/2 the
footprint from the end of the interval at each scale.

The cwtfilterbank and cwt functions use an approximation to the 1/e rule to delineate
the COI. The approximation involves adding one time-domain standard deviation at each
scale to the beginning of the observation interval and subtracting one time-domain
standard deviation at each scale from the end of the interval. Before we demonstrate this
correspondence, add the computed COI to the previous plot.

helperPlotScalogram(f,cfs,coi)
title('Scalogram with Cone of Influence')
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You see that the computed COI is a good approximation to boundaries of the significant
effects of an impulse at the beginning and end of the signal.

To show how cwtfilterbank and cwt compute this rule explicitly, consider two
examples, one for the analytic Morlet wavelet and one for the default Morse wavelet.
Begin with the analytic Morlet wavelet, where our one time-domain standard deviation
rule agrees exactly with the expression of the folding time used by Torrence and Compo
[3].

fb = cwtfilterbank('Wavelet','amor');
[~,f,coi] = wt(fb,dirac);

The expression for the COI in Torrence and Compo is 2s where s is the scale. For the
analytic Morlet wavelet in cwtfilterbank and cwt, this is given by:
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cf = 6/(2*pi);
predtimes = sqrt(2)*cf./f;

Plot the COI returned by cwtfilterbank along with the expression used in Torrence and
Compo.

plot(1:1024,coi,'k--','linewidth',2)
hold on
grid on
plot(predtimes,f,'r*')
plot(1024-predtimes,f,'r*')
set(gca,'yscale','log')
axis tight
legend('COI','Predicted COI','Location','best')
xlabel('Samples')
ylabel('Hz')
title('Cone of Influence - Analytic Morlet Wavelet')
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The last example shows the same correspondence for the default Morse wavelet in
cwtfilterbank and cwt. The time-domain standard deviation of the default Morse
wavelet is 5.5008, and the peak frequency is 0.2995 cycles/sample. Use the center
frequencies of the wavelet bandpass filters as well as the time-domain standard deviation
rule to obtain the predicted COI and compare against the values returned by
cwtfilterbank.

fb = cwtfilterbank;
[~,f,coi] = wt(fb,dirac);
sd = 5.5008;
cf = 0.2995;
predtimes = cf./f*sd;
figure
plot(1:1024,coi,'k--','linewidth',2)
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hold on
grid on
plot(predtimes,f,'r*')
plot(1024-predtimes,f,'r*')
set(gca,'yscale','log')
axis tight
legend('COI','Predicted COI','Location','best')
xlabel('Samples')
ylabel('Hz')
title('Cone of Influence - Default Morse Wavelet')

Appendix

The following helper function is used in this example.
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helperPlotScalogram

function varargout = helperPlotScalogram(f,cfs,coi)
nargoutchk(0,1);
ax = newplot;
surf(ax,1:1024,f,abs(cfs),'EdgeColor','none')
ax.YScale = 'log';
caxis([0.01 1])
colorbar
grid on
ax.YLim = [min(f) max(f)];
ax.XLim = [1 size(cfs,2)];
view(0,90)

xlabel('Time')
ylabel('Cycles/Sample')

if nargin == 3
    hl = line(ax,1:1024,coi,ones(1024,1));
    hl.Color = 'k';
    hl.LineWidth = 2;
end

if nargout > 0
    varargout{1} = ax;
end

end
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See Also
cwt | cwtfilterbank

More About
• “Morse Wavelets” on page 2-21
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Time-Frequency Analysis and Continuous Wavelet
Transform

This example shows how the variable time-frequency resolution of the continuous wavelet
transform can help you obtain a sharp time-frequency representation.

The continuous wavelet transform (CWT) is a time-frequency transform, which is ideal for
analyzing nonstationary signals. A signal being nonstationary means that its frequency-
domain representation changes over time. Many signals are nonstationary, such as
electrocardiograms, audio signals, earthquake data, and climate data.

Load Hyperbolic Chirp

Load a signal that has two hyperbolic chirps. The data are sampled at 2048 Hz. The first
chirp is active between 0.1 and 0.68 seconds, and the second chirp is active between 0.1
and 0.75 seconds. The instantaneous frequency (in hertz) of the first chirp at time t is

15π
(0 . 8 − t)2

/2π . The instantaneous frequency of the second chirp at time t is

5π
(0 . 8 − t)2

/2π. Plot the signal.

load hychirp
plot(t,hychirp)
grid on
title('Signal')
axis tight
xlabel('Time (s)')
ylabel('Amplitude')
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Time-Frequency Analysis: Fourier Transform

The Fourier transform (FT) is very good at identifying frequency components present in a
signal. However, the FT does not identify when the frequency components occur.

Plot the magnitude spectrum of the signal. Zoom in on the region between 0 and 200 Hz.

sigLen = numel(hychirp);
fchirp = fft(hychirp);
fr = Fs*(0:1/Fs:1-1/Fs);
plot(fr(1:sigLen/2),abs(fchirp(1:sigLen/2)),'x-')
xlabel('Frequency (Hz)')
ylabel('Amplitude')
axis tight
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grid on
xlim([0 200])

Time-Frequency Analysis: Short-Time Fourier Transform

The Fourier transform does not provide time information. To determine when the changes
in frequency occur, the short-time Fourier transform (STFT) approach segments the signal
into different chunks and performs the FT on each chunk. The STFT tiling in the time-
frequency plane is shown here.
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The STFT provides some information on both the timing and the frequencies at which a
signal event occurs. However, choosing a window (segment) size is key. For time-
frequency analysis using the STFT, choosing a shorter window size helps obtain good time
resolution at the expense of frequency resolution. Conversely, choosing a larger window
helps obtain good frequency resolution at the expense of time resolution.

Once you pick a window size, it remains fixed for the entire analysis. If you can estimate
the frequency components you are expecting in your signal, then you can use that
information to pick a window size for the analysis.

The instantaneous frequencies of the two chirps at their initial time points are
approximately 5 Hz and 15 Hz. Use the helper function helperPlotSpectrogram to
plot the spectrogram of the signal with a time window size of 200 milliseconds. The
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source code for helperPlotSpectrogram is listed in the appendix. The helper function
plots the instantaneous frequencies over the spectrogram as black dashed-line segments.
The instantaneous frequencies are resolved early in the signal, but not as well later.

helperPlotSpectrogram(hychirp,t,Fs,200)

Now use helperPlotSpectrogram to plot the spectrogram with a time window size of
50 milliseconds. The higher frequencies, which occur later in the signal, are now
resolved, but the lower frequencies at the beginning of the signal are not.

helperPlotSpectrogram(hychirp,t,Fs,50)

 Time-Frequency Analysis and Continuous Wavelet Transform

2-49



For nonstationary signals like the hyperbolic chirp, using the STFT is problematic. No
single window size can resolve the entire frequency content of such signals.

Time-Frequency Analysis: Continuous Wavelet Transform

The continuous wavelet transform (CWT) was created to overcome the resolution issues
inherent in the STFT. The CWT tiling on the time-frequency plane is shown here.
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The CWT tiling of the plane is useful because many real-world signals have slowly
oscillating content that occurs on long scales, while high frequency events tend to be
abrupt or transient. However, if it were natural for high-frequency events to be long in
duration, then using the CWT would not be appropriate. You would have poorer frequency
resolution without gaining any time resolution. But that is quite often not the case. The
human auditory system works this way; we have much better frequency localization at
lower frequencies, and better time localization at high frequencies.

Plot the scalogram of the CWT. The scalogram is the absolute value of the CWT plotted as
a function of time and frequency. The plot uses a logarithmic frequency axis because
frequencies in the CWT are logarithmic. The presence of the two hyperbolic chirps in the
signal is clear from the scalogram. With the CWT, you can accurately estimate the
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instantaneous frequencies throughout the duration of the signal, without worrying about
picking a segment length.

cwt(hychirp,Fs)

The white dashed line marks what is known as the cone of influence. The cone of
influence shows areas in the scalogram potentially affected by boundary effects. For more
information, see “Boundary Effects and the Cone of Influence” on page 2-32.

To get a sense of how rapidly the magnitude of the wavelet coefficients grows, use the
helper function helperPlotScalogram3d to plot the scalogram as a 3-D surface. The
source code for helperPlotScalogram3d is listed in the appendix.

helperPlotScalogram3d(hychirp,Fs)
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Use the helper function helperPlotScalogram to plot the scalogram of the signal and
the instantaneous frequencies. The source code for helperPlotScalogram is listed in
the appendix. The instantaneous frequencies align well with the scalogram features.

helperPlotScalogram(hychirp,Fs)
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Appendix – Helper Functions

helperPlotSpectrogram

function helperPlotSpectrogram(sig,t,Fs,timeres)
% This function is only intended to support this wavelet example.
% It may change or be removed in a future release.

[px,fx,tx] = pspectrum(sig,Fs,'spectrogram','TimeResolution',timeres/1000);
hp = pcolor(tx,fx,20*log10(abs(px)));
hp.EdgeAlpha = 0;
ylims = hp.Parent.YLim;
yticks = hp.Parent.YTick;
cl = colorbar;
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cl.Label.String = 'Power (dB)';
axis tight
hold on
title(['Time Resolution: ',num2str(timeres),' ms'])
xlabel('Time (s)')
ylabel('Hz');
dt  = 1/Fs;
idxbegin = round(0.1/dt);
idxend1 = round(0.68/dt);
idxend2 = round(0.75/dt);
instfreq1 = abs((15*pi)./(0.8-t).^2)./(2*pi);
instfreq2 = abs((5*pi)./(0.8-t).^2)./(2*pi);
plot(t(idxbegin:idxend1),(instfreq1(idxbegin:idxend1)),'k--');
hold on;
plot(t(idxbegin:idxend2),(instfreq2(idxbegin:idxend2)),'k--');
ylim(ylims);
hp.Parent.YTick = yticks;
hp.Parent.YTickLabels = yticks;
hold off
end

helperPlotScalogram
function helperPlotScalogram(sig,Fs)
% This function is only intended to support this wavelet example.
% It may change or be removed in a future release.
[cfs,f] = cwt(sig,Fs);

sigLen = numel(sig);
t = (0:sigLen-1)/Fs;

hp = pcolor(t,log2(f),abs(cfs));
hp.EdgeAlpha = 0;
ylims = hp.Parent.YLim;
yticks = hp.Parent.YTick;
cl = colorbar;
cl.Label.String = 'magnitude';
axis tight
hold on
title('Scalogram and Instantaneous Frequencies')
xlabel('Seconds');
ylabel('Hz');
dt  = 1/2048;
idxbegin = round(0.1/dt);
idxend1 = round(0.68/dt);
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idxend2 = round(0.75/dt);
instfreq1 = abs((15*pi)./(0.8-t).^2)./(2*pi);
instfreq2 = abs((5*pi)./(0.8-t).^2)./(2*pi);
plot(t(idxbegin:idxend1),log2(instfreq1(idxbegin:idxend1)),'k--');
hold on;
plot(t(idxbegin:idxend2),log2(instfreq2(idxbegin:idxend2)),'k--');
ylim(ylims);
hp.Parent.YTick = yticks;
hp.Parent.YTickLabels = 2.^yticks;
end

helperPlotScalogram3d

function helperPlotScalogram3d(sig,Fs)
% This function is only intended to support this wavelet example.
% It may change or be removed in a future release.
figure
[cfs,f] = cwt(sig,Fs);

sigLen = numel(sig);
t = (0:sigLen-1)/Fs;
surface(t,f,abs(cfs));
xlabel('Time (s)')
ylabel('Frequency (Hz)')
zlabel('Magnitude')
title('Scalogram In 3-D')
set(gca,'yscale','log')
shading interp
view([-40 30])
end

See Also
cwt | cwtfilterbank | waveletScattering | waveletScattering2

More About
• “Boundary Effects and the Cone of Influence” on page 2-32
• “Classify Time Series Using Wavelet Analysis and Deep Learning”
• “Wavelet Time Scattering Classification of Phonocardiogram Data”
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Continuous Wavelet Analysis of Modulated Signals
This example shows how to use the continuous wavelet transform (CWT) to analyze
modulated signals.

Load a quadratic chirp signal. The signal's frequency begins at approximately 500 Hz at t
= 0, decreases to 100 Hz at t=2, and increases back to 500 Hz at t=4. The sampling
frequency is 1 kHz.

load quadchirp;
fs = 1000;

Obtain a time-frequency plot of this signal using the CWT with a bump wavelet. The bump
wavelet is a good choice for the CWT when your signals are oscillatory and you are more
interested in time-frequency analysis than localization of transients.

[cfs,f] = cwt(quadchirp,'bump',fs);
helperCWTTimeFreqPlot(cfs,tquad,f,'surf','CWT of Quadratic Chirp','Seconds','Hz')
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The CWT clearly shows the time evolution of the quadratic chirp's frequency. The
quadratic chirp is a frequency-modulated signal. While that signal is synthetic, frequency
and amplitude modulation occur frequently in natural signals as well. Use the CWT to
obtain a time-frequency analysis of an echolocation pulse emitted by a big brown bat
(Eptesicus Fuscus). The sampling interval is 7 microseconds. Use the bump wavelet with
32 voices per octave. Thanks to Curtis Condon, Ken White, and Al Feng of the Beckman
Center at the University of Illinois for the bat data and permission to use it in this
example.

load batsignal
t = 0:DT:(numel(batsignal)*DT)-DT;
[cfs,f] = cwt(batsignal,'bump',1/DT,'VoicesPerOctave',32);
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helperCWTTimeFreqPlot(cfs,t.*1e6,f./1e3,'surf','Bat Echolocation (CWT)',...
    'Microseconds','kHz')

For the final example, obtain a time-frequency analysis of some seismograph data
recorded during the 1995 Kobe earthquake. The data are seismograph (vertical
acceleration, nm/sq.sec) measurements recorded at Tasmania University, Hobart,
Australia on 16 January 1995 beginning at 20:56:51 (GMT) and continuing for 51 minutes
at 1 second intervals. Use the default analytic Morse wavelet.

load kobe;
dt = 1;
cwt(kobe,1);
title('CWT of 1995 Kobe Earthquake Seismograph Data');

 Continuous Wavelet Analysis of Modulated Signals

2-59



2 Continuous Wavelet Analysis

2-60



Remove Time-Localized Frequency Components
Create a signal consisting of exponentially weighted sine waves. The signal has two 25-Hz
components -- one centered at 0.2 seconds and one centered at 0.5 seconds. It also has
two 70-Hz components -- one centered at 0.2 and one centered at 0.8 seconds. The first
25-Hz and 70-Hz components co-occur in time.

t = 0:1/2000:1-1/2000;
dt = 1/2000;
x1 = sin(50*pi*t).*exp(-50*pi*(t-0.2).^2);
x2 = sin(50*pi*t).*exp(-100*pi*(t-0.5).^2);
x3 = 2*cos(140*pi*t).*exp(-50*pi*(t-0.2).^2);
x4 = 2*sin(140*pi*t).*exp(-80*pi*(t-0.8).^2);
x = x1+x2+x3+x4;
plot(t,x)
grid on;
title('Superimposed Signal')
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Obtain and display the CWT.

cwt(x,2000);
title('Analytic CWT using Default Morse Wavelet');
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Remove the 25 Hz component which occurs from approximately 0.07 to 0.3 seconds by
zeroing out the CWT coefficients. Use the inverse CWT (icwt) to reconstruct an
approximation to the signal.

[cfs,f] = cwt(x,2000);
T1 = .07;  T2 = .33;
F1 = 19;   F2 = 34;
cfs(f > F1 & f < F2, t> T1 & t < T2) = 0;
xrec = icwt(cfs);

Display the CWT of the reconstructed signal. The initial 25-Hz component is removed.

cwt(xrec,2000)
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Plot the original signal and the reconstruction.

subplot(2,1,1);
plot(t,x);
grid on;
title('Original Signal');
subplot(2,1,2);
plot(t,xrec)
grid on;
title('Signal with first 25-Hz component removed');
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Compare the reconstructed signal with the original signal without the 25-Hz component
centered at 0.2 seconds.

y = x2+x3+x4;
figure;
plot(t,xrec)
hold on
plot(t,y,'r--')
grid on;
legend('Inverse CWT approximation','Original Signal Without 25-Hz');
hold off
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Time-Varying Coherence
Fourier-domain coherence is a well-established technique for measuring the linear
correlation between two stationary processes as a function of frequency on a scale from 0
to 1. Because wavelets provide local information about data in time and scale (frequency),
wavelet-based coherence allows you to measure time-varying correlation as a function of
frequency. In other words, a coherence measure suitable for nonstationary processes.

To illustrate this, examine near-infrared spectroscopy (NIRS) data obtained in two human
subjects. NIRS measures brain activity by exploiting the different absorption
characteristics of oxygenated and deoxygenated hemoglobin. The recording site was the
superior frontal cortex for both subjects and the data was sampled at 10 Hz. The data is
taken from Cui, Bryant, & Reiss (2012) and was kindly provided by the authors for this
example.

In the experiment, the subjects alternatively cooperated and competed on a task. The
period of the task was approximately 7.5 seconds.

load NIRSData;
figure
plot(tm,NIRSData(:,1))
hold on
plot(tm,NIRSData(:,2),'r')
legend('Subject 1','Subject 2','Location','NorthWest')
xlabel('Seconds')
title('NIRS Data')
grid on;
hold off;
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Examining the time-domain data, it is not clear what oscillations are present in the
individual time series, or what oscillations are common to both data sets. Use wavelet
analysis to answer both questions.

Obtain the wavelet coherence as a function of time and frequency. You can use
wcoherence to output the wavelet coherence, cross-spectrum, scale-to- frequency, or
scale-to-period conversions, as well as the cone of influence. In this example, the helper
function helperPlotCoherence packages some useful commands for plotting the
outputs of wcoherence.

[wcoh,~,f,coi] = wcoherence(NIRSData(:,1),NIRSData(:,2),10,'numscales',16);
helperPlotCoherence(wcoh,tm,f,coi,'Seconds','Hz');

2 Continuous Wavelet Analysis

2-68



In the plot, you see a region of strong coherence throughout the data collection period
around 1 Hz. This results from the cardiac rhythms of the two subjects. Additionally, you
see regions of strong coherence around 0.13 Hz. This represents coherent oscillations in
the subjects' brains induced by the task. If it is more natural to view the wavelet
coherence in terms of periods rather than frequencies, you can input the sampling
interval. With the sampling interval, wcoherence provides scale-to-period conversions.

[wcoh,~,P,coi] = wcoherence(NIRSData(:,1),NIRSData(:,2),seconds(1/10),...
    'numscales',16);
helperPlotCoherence(wcoh,tm,seconds(P),seconds(coi),'Time (secs)','Periods (Seconds)');
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Again, note the coherent oscillations corresponding to the subjects' cardiac activity
occurring throughout the recordings with a period of approximately one second. The task-
related activity is also apparent with a period of approximately 8 seconds. Consult Cui,
Bryant, & Reiss (2012) for a more detailed wavelet analysis of this data.

In summary, this example showed how to use wavelet coherence to look for time-localized
coherent oscillatory behavior in two time series. For nonstationary signals, a measure of
coherence that provides simultaneous time and frequency (period) information is often
more useful.

Reference: Cui, X., D. M. Bryant, and A. L. Reiss. "NIRS-Based hyperscanning reveals
increased interpersonal coherence in superior frontal cortex during cooperation."
Neuroimage. Vol. 59, Number 3, 2012, pp. 2430-2437.
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Continuous Wavelet Analysis of Cusp Signal
This example shows how to perform continuous wavelet analysis of a cusp signal. You can
use cwt for analysis using an analytic wavelet and wtmm to isolate and characterized
singularities.

Load and plot a cusp signal. Display its definition at the command line.

load cuspamax; 
plot(cuspamax); grid on;

disp(caption)

x = linspace(0,1,1024); y = exp(-128*((x-0.3).^2))-3*(abs(x-0.7).^0.4);
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Obtain and view the CWT of the cusp signal. The CWT uses an analytic Morse wavelet
with gamma equal to 2 and a time-bandwidth parameter of 2.5. Notice the narrow region
in the scalogram converging to the finest scale (highest frequency). This indicates a
discontinuity in the signal.

cwt(cuspamax,'WaveletParameters',[2 2.5]);

Obtain a plot of the wavelet maxima lines using wavelet transform modulus maxima. wtmm
returns estimates of the Holder exponents, which characterize isolated singularities in a
signal. Notice that the cusp is shown very clearly using wtmm.

wtmm(cuspamax,'ScalingExponent','local');
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Complex Continuous Analysis Using the Wavelet
Analyzer App

This example shows how to use the Complex Continuous Wavelet 1-D tool in the
Wavelet Analyzer app to analyze a cusp signal.

1 Start the Complex Continuous Wavelet 1-D Tool.

From the MATLAB prompt, type waveletAnalyzer. The Wavelet Analyzer appears.

Click the Complex Continuous Wavelet 1-D menu item.

The continuous wavelet analysis tool for 1-D signal data appears.
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2 Load a signal.

At the MATLAB command prompt, type

load cuspamax;

In the Complex Continuous Wavelet 1-D tool, select File > Import from
Workspace. When the Import from Workspace dialog box appears, select the
cuspamax variable. Click OK to import the cusp signal data.

The default value for the sampling period is equal to 1 (second).
3 Perform a Complex Continuous Wavelet Transform

To start our analysis, let's perform an analysis using the cgau4 wavelet at scales 1
through 64 in steps of 2, just as we did using command-line functions in “Continuous
Wavelet Analysis of Cusp Signal” on page 2-72.

In the upper-right portion of the Complex Continuous Wavelet 1-D tool, select the
cgau4 wavelet and scales 1–64 in steps of 2.
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Click the Analyze button.

After a pause for computation, the tool displays the usual plots associated to the
modulus of the coefficients on the left side, and the angle of the coefficients on the
right side.
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Each side has exactly the same representation that we found in “Continuous Wavelet
Analysis of Noisy Sinusoid Using the Wavelet Analyzer App” on page 2-8.

Select the plots related to the modulus of the coefficients using the Modulus option
button in the Selected Axes frame.
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The figure now looks like the one in the real Continuous Wavelet 1-D tool.

To import and export information from the Complex Continuous Wavelet tool, see
“Importing and Exporting Information from the Wavelet Analyzer App” on page 2-19. The
only difference is that the variable coefs is a complex matrix (see “Saving Wavelet
Coefficients” on page 2-19).
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DFT-Based Continuous Wavelet Analysis Using the
Wavelet Analyzer App

You can use the Continuous Wavelet 1-D (Using FFT) tool to perform continuous
wavelet analysis.

1 At the MATLAB command prompt, enter

waveletAnalyzer
2 Click the Continuous Wavelet 1-D (Using FFT) menu item.

3 At the MATLAB command prompt, type

load noisdopp;

In the Continuous Wavelet 1-D (Using FFT) tool, select File > Import from
Workspace. When the Import from Workspace dialog box appears, select the
noisdopp variable. Click OK to import the data.
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4 Using the menu default parameters, click Analyze.

 DFT-Based Continuous Wavelet Analysis Using the Wavelet Analyzer App

2-81



5 Reconstruct the signal based on all the default dyadic scales. Click Scales Selection.

Select all scales by clicking All. Click Synthesize.
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In the top left, the synthesized signal plot is superimposed on the original signal. The
relative maximum and L2 errors are displayed under the plot.

The single integral CWT inversion does not produce perfect reconstruction, but the
relative errors using the default logarithmically–spaced scales are small.

6 Obtain a signal approximation from selected scales.

Click None in the Selection of Scales panel to undo the scale selection. Then, select
only scale indices greater than 10 and reconstruct an approximation to the original
signal. Hold the Ctrl key while selecting scale indices 11–21. The scale indices
correspond to the following physical scales.

dt = 1;
s0 = 2*dt;
ds = 0.4875;
nb = 21;
physical_scales = s0*pow.^((0:nb-1)*ds);

7 Click Synthesize.
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The reconstructed signal from scale indices 11–21 is a lowpass approximation to the
noisy Doppler signal.

8 Analyze using linear scales. In the Scales drop-down menu in the upper right, select
Linear default and click Analyze.
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Note The other options under Scales include Dyadic default and Manual.

If you select Manual, a Define Scales button appears. Click Define Scales to set the
parameters for your scale vector.

Manual Selection of CWT Coefficients
Select coefficients manually by graphically selecting the CWT coefficients. Reconstruct
the signal from the selected coefficients. Click Manual Selection of Coefficients. The
Select the Coefficients Manually panel appears with a single box containing all the
CWT coefficient moduli.
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You can change the CWT coefficient view to Angle, Real, or Imaginary.

To select a subset of coefficients, draw a box by left-clicking and dragging the mouse.
When you release the mouse button, a semi-transparent box with a green border is
superimposed on the plot.

You can place multiple boxes on the same plot. To synthesize a signal based on the
selected coefficients, click Synthesize.
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To select, unselect, or delete a box, right-click in the box. A context menu appears that
allows you to select, unselect, or delete the box. After you select the coefficients within
the box, the border of the box displays in green. When the coefficients within the box are
not selected, the border of the box displays in red.

You can move a box by clicking the left mouse button inside the box while simultaneously
pressing the Shift key. The border of the box changes to yellow, and you can drag the
box to the desired location. You must keep the Shift key pressed while you are moving
the box.

Quit the manual selection mode by clicking the Close button.

In the Show synthesized signals from panel on the right, you can turn the plot of your
synthesized signal on and off by checking and unchecking Manual selection.
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Using the File > Save > Synthesized signal menu, you can save the available
synthesized signals.

Using the File > Save > Decomposition menu, you can save the wavelet analysis as a
MAT file.
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Two-Dimensional CWT of Noisy Pattern
This example shows how to detect a pattern in a noisy image using the 2-D continuous
wavelet transform (CWT). The example uses both isotropic (non-directional) and
anisotropic (directional) wavelets. The isotropic wavelet is not sensitive to the orientation
of the feature, while the directional wavelet is.

Use the isotropic (non-directional) Mexican hat wavelet, also known as the Ricker
wavelet, and the anisotropic (directional) Morlet wavelet. Demonstrate that the real-
valued Mexican hat wavelet does not depend on the angle.

Y = zeros(32,32);
Y(16,16) = 1;
cwtmexh = cwtft2(Y,'wavelet','mexh','scales',1,...
    'angles',[0 pi/2]);
surf(real(cwtmexh.cfs(:,:,1,1,1)));
shading interp; title('Angle = 0 Radians');
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Extract the wavelet corresponding to an angle of π/2 radians. The wavelet is isotropic and
therefore does not differentiate oriented features in data.

surf(real(cwtmexh.cfs(:,:,1,1,2)));
shading interp; title('Angle = pi/2 Radians');
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Repeat the preceding steps for the complex-valued Morlet wavelet. The Morlet wavelet
has a larger spatial support than the Mexican hat wavelet, therefore this example uses a
larger matrix. The wavelet is complex-valued, so the modulus is plotted.

Y = zeros(64,64);
Y(32,32) = 1;
cwtmorl = cwtft2(Y,'wavelet','morl','scales',1,...
    'angles',[0 pi/2]);
surf(abs(cwtmorl.cfs(:,:,1,1,1)));
shading interp; title('Angle = 0 Radians');
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Extract the wavelet corresponding to an angle of π/2 radians. Unlike the Mexican hat
wavelet, the Morlet wavelet is not isotropic and therefore is sensitive to the direction of
features in the data.

surf(abs(cwtmorl.cfs(:,:,1,1,2)));
shading interp; title('Angle = pi/2 Radians');
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Apply the Mexican hat and Morlet wavelets to the detection of a pattern in noise. Create a
pattern consisting of line segments joined at a 90-degree angle. The amplitude of the
pattern is 3 and it occurs in additive N(0,1) white Gaussian noise.

X = zeros(256,256);
X(100:200,100:102) = 3;
X(200:202,100:125) = 3;
X = X+randn(size(X));
imagesc(X); axis xy;
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Obtain the 2-D CWT at scales 3 to 8 in 0.5 increments with the Mexican hat wavelet.
Visualize the magnitude-squared 2-D wavelet coefficients at scale 3.

cwtmexh = cwtft2(X,'wavelet','mexh','scales',3:0.5:8);
surf(abs(cwtmexh.cfs(:,:,1,3,1)).^2);
view(0,90); shading interp; axis tight;
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Use a directional Morlet wavelet to extract the vertical and horizontal line segments
separately. The vertical line segment is extracted by one angle. The horizontal line
segment is extracted by another angle.

cwtmorl = cwtft2(X,'wavelet','morl','scales',3:0.5:8,...
    'angles',[0 pi/2]);
surf(abs(cwtmorl.cfs(:,:,1,4,1)).^2);
view(0,90); shading interp; axis tight;
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figure;
surf(abs(cwtmorl.cfs(:,:,1,4,2)).^2);
view(0,90); shading interp; axis tight;
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2-D Continuous Wavelet Transform App
In this section...
“2-D Continuous Wavelet Transform” on page 2-98
“2-D CWT App Example” on page 2-99

The 2-D continuous wavelet transform (CWT) app enables you to analyze your image data
and export the results of that analysis to the MATLAB workspace. The app provides all the
functionality of the command line functions cwtft2 and cwtftinfo2. Access the 2-D
CWT app in the apps gallery by selecting Wavelet Design & Analysis in the Signal
Processing and Communications section or entering

cwtfttool2

at the MATLAB command prompt.

2-D Continuous Wavelet Transform
The 2-D continuous wavelet transform is a representation of 2-D data (image data) in 4
variables: dilation, rotation, and position. Dilation and rotation are real-valued scalars and
position is a 2-D vector with real-valued elements. Let x denote a two-element vector of
real-numbers. If

f (x) ∈ L2(ℝ2)

is square-integrable on the plane, the 2-D CWT is defined as

WTf (a, b, θ) =∫ℝ2 f (x)1
aψ(r−θ(x− b

a )) dx a ∈ ℝ+, x, b ∈ ℝ2

where the bar denotes the complex conjugate and rθ is the 2-D rotation matrix

rθ =
cos(θ) −sin(θ)
sin(θ) cos(θ)

θ ∈ [0, 2π)

The 2-D CWT is a space-scale representation of an image. You can view the inverse of the
scale and the rotation angle taken together as a spatial-frequency variable, which gives
the 2-D CWT an interpretation as a space-frequency representation. For all admissible 2-D
wavelets, the 2-D CWT acts as a local filter for an image in scale and position. If the
wavelet is isotropic, there is no dependence on angle in the analysis. The Mexican hat
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wavelet is an example of an isotropic wavelet. Isotropic wavelets are suitable for
pointwise analysis of images. If the wavelet is anisotropic, there is a dependence on angle
in the analysis, and the 2-D CWT acts a local filter for an image in scale, position, and
angle. The Cauchy wavelet is an example of an anisotropic wavelet. In the Fourier
domain, this means that the spatial frequency support of the wavelet is a convex cone
with the apex at the origin. Anisotropic wavelets are suitable for detecting directional
features in an image. See “Two-Dimensional CWT of Noisy Pattern” on page 2-89 for an
illustration of the difference between isotropic and anisotropic wavelets.

2-D CWT App Example
This example shows how to analyze an image using the 2-D CWT app.

Load the triangle image in the MATLAB workspace.

imdata = imread('triangle.jpg');

Launch the 2-D CWT app by selecting Wavelet Design & Analysis in the Signal
Processing and Communications section of the apps gallery. From the 2-D section,
select Continuous Wavelet Transform 2-D. Alternatively, enter

cwtfttool2

at the MATLAB command prompt.

Select File –> Import Data to import the imdata variable.
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From the Wavelet drop down menu, select the cauchy wavelet.

For the Angles and Scales, select the Manual option.

Click Define to specify a vector of angles. Select Manual from the Type drop-down list
and specify a vector of angles from 0 to 7*pi/8 radians in increments of pi/8 radians,
0:pi/8:(7*pi)/8. Click Apply to apply your choice of angles.
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Click Define to specify a vector of scales from 0.5 to 4 in increments of 0.5. Select Linear
from the Type drop-down list. Set First Scale equal to 0.5, Gap between two scales
equal to 0.5, and Number of Scales equal to 8. Equivalently, you can select Manual
from the Type drop-down list and specify the vector of scales as 0.5:0.5:4. Click Apply
to apply your choice of scales.

Click Analyze to obtain the 2-D CWT.
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Set the Index of Scale to be 1 and click More on Angles. Click Movie to step
through the manually-defined angles for the 2-D CWT coefficients at scale 0.5.

Select File –> Export Data –> Export CWTFT Struct to Workspace to export the
analysis to the MATLAB workspace. You can find an explanation of the structure fields in
the function reference for cwtft2.
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Discrete Wavelet Analysis

• “Critically Sampled and Oversampled Wavelet Filter Banks” on page 3-2
• “1-D Decimated Wavelet Transforms” on page 3-11
• “Fast Wavelet Transform (FWT) Algorithm” on page 3-43
• “Border Effects” on page 3-57
• “Nondecimated Discrete Stationary Wavelet Transforms (SWTs)” on page 3-66
• “1-D Stationary Wavelet Transform” on page 3-73
• “Wavelet Changepoint Detection” on page 3-88
• “Scale-Localized Volatility and Correlation” on page 3-103
• “R Wave Detection in the ECG” on page 3-114
• “Wavelet Cross-Correlation for Lead-Lag Analysis” on page 3-125
• “1-D Multisignal Analysis” on page 3-138
• “2-D Discrete Wavelet Analysis” on page 3-188
• “2-D Stationary Wavelet Transform” on page 3-214
• “Shearlet Systems” on page 3-227
• “3-D Discrete Wavelet Analysis” on page 3-231
• “Dual-Tree Wavelet Transforms” on page 3-243
• “Analytic Wavelets Using the Dual-Tree Wavelet Transform” on page 3-282
• “Multifractal Analysis” on page 3-286
• “Wavelet Analysis of Financial Data” on page 3-306
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Critically Sampled and Oversampled Wavelet Filter
Banks

In this section...
“Double-Density Wavelet Transform” on page 3-3
“Dual-Tree Complex Wavelet Transform” on page 3-6
“Dual-Tree Double-Density Wavelet Transforms” on page 3-9

Wavelet filter banks are special cases of multirate filter banks called tree-structured filter
banks. In a filter bank, two or more filters are applied to an input signal and the filter
outputs are typically downsampled. The following figure illustrates two stages, or levels,
of a critically sampled two-channel tree-structured analysis filter bank. The filters are
depicted in the z domain.

The filter system functions, H0(z) and H1(z), are typically designed to approximately
partition the input signal, X, into disjoint subbands. In wavelet tree-structured filter
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banks, the filter H0(z) is a lowpass, or scaling, filter, with a non-zero frequency response
on the interval [-π/2, π/2] radians/sample or [-1/4, 1/4] cycles/sample. The filter H1(z) is a
highpass, or wavelet, filter, with a non-zero frequency response on the interval [-π, -π/2] ∪
[π/2, π] radians/sample or [-1/2, -1/4] ∪ [1/4, 1/2] cycles/sample. The filter bank iterates
on the output of the lowpass analysis filter to obtain successive levels resulting into an
approximate octave-band filtering of the input. The two analysis filters are not ideal,
which results in aliasing that must be canceled by appropriately designed synthesis filters
for perfect reconstruction. For an orthogonal filter bank, the union of the scaling filter
and its even shifts and the wavelet filter and its even shifts forms an orthonormal basis for
the space of square-summable sequences, ℓ2(ℤ). The synthesis filters are the time-reverse
and conjugates of the analysis filters. For biorthogonal filter banks, the synthesis filters
and their even shifts form the reciprocal, or dual, basis to the analysis filters. With two
analysis filters, downsampling the output of each analysis filter by two at each stage
ensures that the total number of output samples equals the number of input samples. The
case where the number of analysis filters is equal to the downsampling factor is referred
to as critical sampling. An analysis filter bank where the number of channels is greater
than the downsampling factor is an oversampled filter bank.

Double-Density Wavelet Transform
The following figure illustrates two levels of an oversampled analysis filter bank with
three channels and a downsampling factor of two. The filters are depicted in the z
domain.
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Assume the filter H0(z), is a lowpass half-band filter and the filters H1(z) and H2(z) are
highpass half-band filters.

Assume the three filters together with the corresponding synthesis filters form a perfect
reconstruction filter bank. If additionally, H1(z) and H2(z) generate wavelets that satisfy
the following relation

ψ1(t) = ψ2(t − 1/2),
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the filter bank implements the double-density wavelet transform. The preceding condition
guarantees that the integer translates of one wavelet fall halfway between the integer
translates of the second wavelet. In frame-theoretic terms, the double-density wavelet
transform implements a tight frame expansion.

The following code illustrates the two wavelets used in the double-density wavelet
transform.

x = zeros(256,1);
df = dtfilters('filters1');
wt1 = dddtree('ddt',x,5,df,df);
wt2 = dddtree('ddt',x,5,df,df);
wt1.cfs{5}(5,1,1) = 1;
wt2.cfs{5}(5,1,2) = 1;
wav1 = idddtree(wt1);
wav2 = idddtree(wt2);
plot(wav1); hold on;
plot(wav2,'r'); axis tight;
legend('\psi_1(t)','\psi_2(t)')

You cannot choose the two wavelet filters arbitrarily to implement the double-density
wavelet transform. The three analysis and synthesis filters must satisfy the perfect
reconstruction (PR) conditions. For three real-valued filters, the PR conditions are

H0(z)H0(1/z) + H1(z)H1(1/z) + H2(z)H2(1/z) = 2
H0(z)H0( − 1/z) + H1(z)H1( − 1/z) + H2(z)H2( − 1/z) = 0

You can obtain wavelet analysis and synthesis frames for the double-density wavelet
transform with 6 and 12 taps using dtfilters.

[df1,sf1] = dtfilters('filters1');
[df2,sf2] = dtfilters('filters2');

df1 and df2 are three-column matrices containing the analysis filters. The first column
contains the scaling filter and columns two and three contain the wavelet filters. The
corresponding synthesis filters are in sf1 and sf2.

See [4] and [5] for details on how to generate wavelet frames for the double-density
wavelet transform.

The main advantages of the double-density wavelet transform over the critically sampled
discrete wavelet transform are
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• Reduced shift sensitivity
• Reduced rectangular artifacts in the 2-D transform
• Smoother wavelets for a given number of vanishing moments

The main disadvantages are

• Increased computational costs
• Non-orthogonal transform

Additionally, while exhibiting less shift sensitivity than the critically sampled DWT, the
double-density DWT is not shift-invariant like the complex dual-tree wavelet transform.
The double-density wavelet transform also lacks the directional selectivity of the oriented
dual-tree wavelet transforms.

Dual-Tree Complex Wavelet Transform
The critically sampled discrete wavelet transform (DWT) suffers from a lack of shift
invariance in 1-D and directional sensitivity in N-D. You can mitigate these shortcomings
by using approximately analytic wavelets. An analytic wavelet is defined as

ψc(t) = ψr(t) + jψi(t)

where j denotes the unit imaginary. The imaginary part of the wavelet, ψi(t), is the Hilbert
transform of the real part, ψr(t). In the frequency domain, the analytic wavelet has
support on only one half of the frequency axis. This means that the analytic wavelet ψc(t)
has only one half the bandwidth of the real-valued wavelet ψr(t).

It is not possible to obtain exactly analytic wavelets generated by FIR filters. The Fourier
transforms of compactly supported wavelets cannot vanish on any set of nonzero
measure. This means that the Fourier transform cannot be zero on the negative frequency
axis. Additionally, the efficient two-channel filter bank implementation of the DWT derives
from the following perfect reconstruction condition for the scaling filter, H0(e jω), of a
multiresolution analysis (MRA)

H0(e jω) 2 + H0(e j(ω + π)) 2 = 2.

If the wavelet associated with an MRA is analytic, the scaling function is also analytic.
This implies that

H0(e jω) = 0 − π ≤ ω < 0,
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from which it follows that H0(e jω) 2 = 2 0 ≤ ω ≤ π . The result is that the scaling filter
is allpass.

The preceding results demonstrate that you cannot find a compactly support wavelet
determined by FIR filters that is exactly analytic. However, you can obtain wavelets that
are approximately analytic by combining two tree-structured filter banks as long as the
filters in the dual-tree transform are carefully constructed to satisfy certain conditions [1],
[6].

The dual-tree complex wavelet transform is implemented with two separate two-channel
FIR filter banks. The output of one filter bank is considered to be the real part, while the
output of the other filter bank is the imaginary part. Because the dual-tree complex
wavelet transform uses two critically sampled filter banks, the redundancy is 2d for a d-
dimensional signal (image). There are a few critical considerations in implementing the
dual-tree complex wavelet transform. For convenience, refer to the two trees as: Tree A
and Tree B.

• The analysis filters in the first stage of each filter bank must differ from the filters
used at subsequent stages in both trees. It is not important which scaling and wavelet
filters you use in the two trees for stage 1. You can use the same first stage scaling and
wavelet filters in both trees.

• The scaling filter in Tree B for stages ≥ 2 must approximate a 1/2 sample delay of the
scaling filter in Tree A. The one-half sample delay condition is a necessary and
sufficient condition for the corresponding Tree B wavelet to be the Hilbert transform
of the Tree A wavelet.[3].

The following figure illustrates three stages of the analysis filter bank for the 1-D dual-
tree complex wavelet transform. The FIR scaling filters for the two trees are denoted by
h0(n), g0(n) . The FIR wavelet filters for the two trees are denoted by h1(n), g1(n) . The

two scaling filters are designed to approximately satisfy the half-sample delay condition

g0(n) = h0(n− 1/2)

The superscript (1) denotes that the first-stage filters must differ from the filters used in
subsequent stages. You can use any valid scaling-wavelet filter pair for the first stage. The
filters h0(n), g0(n)  cannot be arbitrary scaling filters and provide the benefits of using
approximately analytic wavelets.
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2-D Dual-Tree Wavelet Transforms

The dual-tree wavelet transform with approximately analytic wavelets offers substantial
advantages over the separable 2-D DWT for image processing. The traditional separable
2-D DWT suffers from checkerboard artifacts due to symmetric frequency support of real-
valued (non-analytic) scaling functions and wavelets. Additionally, the critically sampled
separable 2-D DWT lacks shift invariance just as the 1-D critically sampled DWT does. The
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Wavelet Toolbox software supports two variants of the dual-tree 2-D wavelet transform,
the real oriented dual-tree wavelet transform and the oriented 2-D dual-tree complex
wavelet transform. Both are described in detail in [6].

The real oriented dual-tree transform consists of two separable (row and column filtering)
wavelet filter banks operating in parallel. The complex oriented 2-D wavelet transform
requires four separable wavelet filter banks and is therefore not technically a dual-tree
transform. However, it is referred to as a dual-tree transform because it is the natural
extension of the 1-D complex dual-tree transform. To implement the real oriented dual-
tree wavelet transform, use the 'realdt' option in dddtree2. To implement the
oriented complex dual-tree transform, use the 'cplxdt' option.

Both the real oriented and oriented complex dual-tree transforms are sensitive to
directional features in an image. Only the oriented complex dual-tree transform is
approximately shift invariant. Shift invariance is not a feature possessed by the real
oriented dual-tree transform.

Dual-Tree Double-Density Wavelet Transforms
The dual-tree double-density wavelet transform combines the properties of the double-
density wavelet transform and the dual-tree wavelet transform [2].

In 1-D, the dual-tree double-density wavelet transform consists of two three-channel filter
banks. The two wavelets in each tree satisfy the conditions described in “Double-Density
Wavelet Transform” on page 3-3. Specifically, the integer translates of one wavelet fall
halfway between the integer translates of the second wavelet. Additionally, the wavelets
in Tree B are the approximate Hilbert transform of the wavelets in Tree A. To implement
the dual-tree double-density wavelet transform for 1-D signals, use the 'cplxdddt'
option in dddtree. Similar to the dual-tree wavelet transform, the dual-tree double-
density wavelet transform provides both real oriented and complex oriented wavelet
transforms in 2-D. To obtain the real oriented dual-tree double-density wavelet transform,
use the 'realdddt' option in dddtree2. To obtain the complex oriented dual-tree
double-density wavelet transform, use the 'cplxdddt' option.
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1-D Decimated Wavelet Transforms
This section takes you through the features of 1-D critically-sampled wavelet analysis
using the Wavelet Toolbox software.

The toolbox provides these functions for 1-D signal analysis. For more information, see
the reference pages.

Analysis-Decomposition Functions
Function Name Purpose
dwt Single-level decomposition
wavedec Decomposition
wmaxlev Maximum wavelet decomposition level

Synthesis-Reconstruction Functions
Function Name Purpose
idwt Single-level reconstruction
waverec Full reconstruction
wrcoef Selective reconstruction
upcoef Single reconstruction

Decomposition Structure Utilities
Function Name Purpose
detcoef Extraction of detail coefficients
appcoef Extraction of approximation coefficients
upwlev Recomposition of decomposition structure
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Denoising and Compression
Function Name Purpose
ddencmp Provide default values for denoising and compression
wbmpen Penalized threshold for wavelet 1-D or 2-D denoising
wdcbm Thresholds for wavelet 1-D using Birgé-Massart strategy
wdencmp Wavelet denoising and compression
wden Automatic wavelet denoising
wthrmngr Threshold settings manager

In this section, you'll learn how to

• Load a signal
• Perform a single-level wavelet decomposition of a signal
• Construct approximations and details from the coefficients
• Display the approximation and detail
• Regenerate a signal by inverse wavelet transform
• Perform a multilevel wavelet decomposition of a signal
• Extract approximation and detail coefficients
• Reconstruct the level 3 approximation
• Reconstruct the level 1, 2, and 3 details
• Display the results of a multilevel decomposition
• Reconstruct the original signal from the level 3 decomposition
• Remove noise from a signal
• Refine an analysis
• Compress a signal
• Show a signal's statistics and histograms

Since you can perform analyses either from the command line or using the Wavelet
Analyzer app, this section has subsections covering each method.

The final subsection discusses how to exchange signal and coefficient information
between the disk and the graphical tools.
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1-D Analysis Using the Command Line
This example involves a real-world signal — electrical consumption measured over the
course of 3 days. This signal is particularly interesting because of noise introduced when
a defect developed in the monitoring equipment as the measurements were being made.
Wavelet analysis effectively removes the noise.

1 Load the signal and select a portion for wavelet analysis.

load leleccum;
s = leleccum(1:3920);
l_s = length(s);

2 Perform a single-level wavelet decomposition of a signal.

Perform a single-level decomposition of the signal using the db1 wavelet.

[cA1,cD1] = dwt(s,'db1');

This generates the coefficients of the level 1 approximation (cA1) and detail (cD1).
3 Construct approximations and details from the coefficients.

To construct the level 1 approximation and detail (A1 and D1) from the coefficients
cA1 and cD1, type

A1 = upcoef('a',cA1,'db1',1,l_s);
D1 = upcoef('d',cD1,'db1',1,l_s);

or

A1 = idwt(cA1,[],'db1',l_s);
D1 = idwt([],cD1,'db1',l_s);

4 Display the approximation and detail.

To display the results of the level-one decomposition, type

subplot(1,2,1); plot(A1); title('Approximation A1')
subplot(1,2,2); plot(D1); title('Detail D1')
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5 Regenerate a signal by using the Inverse Wavelet Transform.

To find the inverse transform, enter

A0 = idwt(cA1,cD1,'db1',l_s);
err = max(abs(s-A0))

6 Perform a multilevel wavelet decomposition of a signal.

To perform a level 3 decomposition of the signal (again using the db1 wavelet), type

[C,L] = wavedec(s,3,'db1');

The coefficients of all the components of a third-level decomposition (that is, the
third-level approximation and the first three levels of detail) are returned
concatenated into one vector, C. Vector L gives the lengths of each component.
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7 Extract approximation and detail coefficients.

To extract the level 3 approximation coefficients from C, type

cA3 = appcoef(C,L,'db1',3);

To extract the levels 3, 2, and 1 detail coefficients from C, type

cD3 = detcoef(C,L,3);
cD2 = detcoef(C,L,2);
cD1 = detcoef(C,L,1);

or

[cD1,cD2,cD3] = detcoef(C,L,[1,2,3]);
8 Reconstruct the Level 3 approximation and the Level 1, 2, and 3 details.

To reconstruct the level 3 approximation from C, type

A3 = wrcoef('a',C,L,'db1',3);

To reconstruct the details at levels 1, 2, and 3, from C, type

D1 = wrcoef('d',C,L,'db1',1); 
D2 = wrcoef('d',C,L,'db1',2); 
D3 = wrcoef('d',C,L,'db1',3);

9 Display the results of a multilevel decomposition.

To display the results of the level 3 decomposition, type

subplot(2,2,1); plot(A3);  
title('Approximation A3') 
subplot(2,2,2); plot(D1);  
title('Detail D1') 
subplot(2,2,3); plot(D2);  
title('Detail D2') 
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subplot(2,2,4); plot(D3);  
title('Detail D3')

10 Reconstruct the original signal from the Level 3 decomposition.

To reconstruct the original signal from the wavelet decomposition structure, type

A0 = waverec(C,L,'db1');  
err = max(abs(s-A0))  

11 Crude denoising of a signal.

Using wavelets to remove noise from a signal requires identifying which component
or components contain the noise, and then reconstructing the signal without those
components.
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In this example, we note that successive approximations become less and less noisy
as more and more high-frequency information is filtered out of the signal.

The level 3 approximation, A3, is quite clean as a comparison between it and the
original signal.

To compare the approximation to the original signal, type

subplot(2,1,1);plot(s);title('Original'); axis off 
subplot(2,1,2);plot(A3);title('Level 3 Approximation'); 
axis off

Of course, in discarding all the high-frequency information, we've also lost many of
the original signal's sharpest features.

Optimal denoising requires a more subtle approach called thresholding. This involves
discarding only the portion of the details that exceeds a certain limit.
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12 Remove noise by thresholding.

Let's look again at the details of our level 3 analysis.

To display the details D1, D2, and D3, type

subplot(3,1,1); plot(D1); title('Detail Level 1'); axis off 
subplot(3,1,2); plot(D2); title('Detail Level 2'); axis off 
subplot(3,1,3); plot(D3); title('Detail Level 3'); axis off

Most of the noise occurs in the latter part of the signal, where the details show their
greatest activity. What if we limited the strength of the details by restricting their
maximum values? This would have the effect of cutting back the noise while leaving
the details unaffected through most of their durations. But there's a better way.

Note that cD1, cD2, and cD3 are just MATLAB vectors, so we could directly
manipulate each vector, setting each element to some fraction of the vectors' peak or
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average value. Then we could reconstruct new detail signals D1, D2, and D3 from the
thresholded coefficients.

To denoise the signal, use the ddencmp command to calculate the default parameters
and the wdencmp command to perform the actual denoising, type

[thr,sorh,keepapp] = ddencmp('den','wv',s); 
clean = wdencmp('gbl',C,L,'db1',3,thr,sorh,keepapp);

Note that wdencmp uses the results of the decomposition (C and L) that we already
calculated. We also specify that we used the db1 wavelet to perform the original
analysis, and we specify the global thresholding option 'gbl'. See ddencmp and
wdencmp in the reference pages for more information about the use of these
commands.

To display both the original and denoised signals, type

subplot(2,1,1); plot(s(2000:3920)); title('Original') 
subplot(2,1,2); plot(clean(2000:3920)); title('denoised')
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We've plotted here only the noisy latter part of the signal. Notice how we've removed
the noise without compromising the sharp detail of the original signal. This is a
strength of wavelet analysis.

While using command line functions to remove the noise from a signal can be
cumbersome, the software's Wavelet Analyzer app includes an easy-to-use denoising
feature that includes automatic thresholding.

More information on the denoising process can be found in the following sections:

• “1-D Analysis Using the Wavelet Analyzer App” on page 3-21
• “Wavelet Denoising and Nonparametric Function Estimation” on page 6-2 in the

Wavelet Toolbox User's Guide

3 Discrete Wavelet Analysis

3-20



• “1-D Adaptive Thresholding of Wavelet Coefficients” on page 6-48
• “1-D Wavelet Variance Adaptive Thresholding” on page 6-16 in the Wavelet

Toolbox User's Guide

1-D Analysis Using the Wavelet Analyzer App
In this section, we explore the same electrical consumption signal as in the previous
section, but we use the Wavelet Analyzer app to analyze and denoise the signal.

1 Start the 1-D Wavelet Analysis Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.
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Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for 1-D signal data appears.
2 Load a signal.

At the MATLAB command prompt, type

load leleccum;

In the Wavelet 1-D tool, select File > Import from Workspace. When the Import
from Workspace dialog box appears, select the leleccum variable. Click OK to
import the electrical consumption signal.

3 Perform a single-level wavelet decomposition.

To start our analysis, let's perform a single-level decomposition using the db1
wavelet, just as we did using the command-line functions in “1-D Analysis Using the
Command Line” on page 3-13.

In the upper right portion of the Wavelet 1-D tool, select the db1 wavelet and single-
level decomposition.
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Click the Analyze button.

After a pause for computation, the tool displays the decomposition.

4 Zoom in on relevant detail.

One advantage of using the Wavelet Analyzer app is that you can zoom in easily on
any part of the signal and examine it in greater detail.

Drag a rubber band box (by holding down the left mouse button) over the portion of
the signal you want to magnify. Here, we've selected the noisy part of the original
signal.
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Click the X+ button (located at the bottom of the screen) to zoom horizontally.

The Wavelet 1-D tool zooms all the displayed signals.

The other zoom controls do more or less what you'd expect them to. The X- button,
for example, zooms out horizontally. The history function keeps track of all your views
of the signal. Return to a previous zoom level by clicking the left arrow button.
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5 Perform a multilevel decomposition.

Again, we'll use the graphical tools to emulate what we did in the previous section
using command line functions. To perform a level 3 decomposition of the signal using
the db1 wavelet:

Select 3 from the Level menu at the upper right, and then click the Analyze button
again.

After the decomposition is performed, you'll see a new analysis appear in the
Wavelet 1-D tool.

Selecting Different Views of the Decomposition

The Display mode menu (middle right) lets you choose different views of the wavelet
decomposition.

The default display mode is called “Full Decomposition Mode.” Other alternatives
include:

• “Separate Mode,” which shows the details and the approximations in separate
columns.

• “Superimpose Mode,” which shows the details on a single plot superimposed in
different colors. The approximations are plotted similarly.
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• “Tree Mode,” which shows the decomposition tree, the original signal, and one
additional component of your choice. Click on the decomposition tree to select the
signal component you'd like to view.

• “Show and Scroll Mode,” which displays three windows. The first shows the
original signal superimposed on an approximation you select. The second window
shows a detail you select. The third window shows the wavelet coefficients.

• “Show and Scroll Mode (Stem Cfs)” is very similar to the “Show and Scroll Mode”
except that it displays, in the third window, the wavelet coefficients as stem plots
instead of colored blocks.

You can change the default display mode on a per-session basis. Select the desired
mode from the View > Default Display Mode submenu.

Note The Compression and Denoising windows opened from the Wavelet 1-D tool
will inherit the current coefficient visualization attribute (stems or colored blocks).

Depending on which display mode you select, you may have access to additional
display options through the More Display Options button.

These options include the ability to suppress the display of various components, and
to choose whether or not to display the original signal along with the details and
approximations.

6 Remove noise from a signal.

The Wavelet Analyzer app features a denoising option with a predefined thresholding
strategy. This makes it very easy to remove noise from a signal.

Bring up the denoising tool: click the denoise button, located in the middle right of
the window, underneath the Analyze button.

3 Discrete Wavelet Analysis

3-26



The Wavelet 1-D Denoising window appears.

While a number of options are available for fine-tuning the denoising algorithm, we'll
accept the defaults of soft fixed form thresholding and unscaled white noise.

Continue by clicking the denoise button.

The denoised signal appears superimposed on the original. The tool also plots the
wavelet coefficients of both signals.
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Zoom in on the plot of the original and denoised signals for a closer look.

Drag a rubber band box around the pertinent area, and then click the XY+ button.

The denoise window magnifies your view. By default, the original signal is shown in
red, and the denoised signal in yellow.
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Dismiss the Wavelet 1-D Denoising window: click the Close button.

You cannot have the denoise and Compression windows open simultaneously, so
close the Wavelet 1-D Denoising window to continue. When the Update
Synthesized Signal dialog box appears, click No. If you click Yes, the Synthesized
Signal is then available in the Wavelet 1-D main window.

7 Refine the analysis.

The graphical tools make it easy to refine an analysis any time you want to. Up to
now, we've looked at a level 3 analysis using db1. Let's refine our analysis of the
electrical consumption signal using the db3 wavelet at level 5.

Select 5 from the Level menu at the upper right, and select the db3 from the
Wavelet menu. Click the Analyze button.

8 Compress the signal.

The graphical interface tools feature a compression option with automatic or manual
thresholding.
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Bring up the Compression window: click the Compress button, located in the
middle right of the window, underneath the Analyze button.

The Compression window appears.

While you always have the option of choosing by level thresholding, here we'll take
advantage of the global thresholding feature for quick and easy compression.

Note If you want to experiment with manual thresholding, choose the By Level
thresholding option from the menu located at the top right of the Wavelet 1-D
Compression window. The sliders located below this menu then control the level-
dependent thresholds, indicated by yellow dotted lines running horizontally through
the graphs on the left of the window. The yellow dotted lines can also be dragged
directly using the left mouse button.

Click the Compress button, located at the center right.

After a pause for computation, the electrical consumption signal is redisplayed in red
with the compressed version superimposed in yellow. Below, we've zoomed in to get a
closer look at the noisy part of the signal.

You can see that the compression process removed most of the noise, but preserved
99.99% of the energy of the signal.

9 Show the residuals.

From the Wavelet 1-D Compression tool, click the Residuals button. The More on
Residuals for Wavelet 1-D Compression window appears.
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Displayed statistics include measures of tendency (mean, mode, median) and
dispersion (range, standard deviation). In addition, the tool provides frequency-
distribution diagrams (histograms and cumulative histograms), as well as time-series
diagrams: autocorrelation function and spectrum. The same feature exists for the
Wavelet 1-D Denoising tool.

Dismiss the Wavelet 1-D Compression window: click the Close button. When the
Update Synthesized Signal dialog box appears, click No.

10 Show statistics.

You can view a variety of statistics about your signal and its components.

From the Wavelet 1-D tool, click the Statistics button.
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The Wavelet 1-D Statistics window appears displaying by default statistics on the
original signal.

Select the synthesized signal or signal component whose statistics you want to
examine. Click the appropriate option button, and then click the Show Statistics
button. Here, we've chosen to examine the synthesized signal using 100 bins instead
of 30, which is the default:
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Displayed statistics include measures of tendency (mean, mode, median) and
dispersion (range, standard deviation).

In addition, the tool provides frequency-distribution diagrams (histograms and
cumulative histograms). You can plot these histograms separately using the
Histograms button from the Wavelets 1-D window.

Click the Approximation option button. A menu appears from which you choose the
level of the approximation you want to examine.
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Select Level 1 and again click the Show Statistics button. Statistics appear for the
level 1 approximation.

Importing and Exporting Information from the Wavelet
Analyzer App
The Wavelet 1-D graphical interface tool lets you import information from and export
information to disk and the MATLAB workspace.

Saving Information to Disk

You can save synthesized signals, coefficients, and decompositions from the Wavelet 1-D
tool to the disk, where the information can be manipulated and later reimported into the
graphical tool.
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Saving Synthesized Signals

You can process a signal in the Wavelet 1-D tool and then save the processed signal to a
MAT-file (with extension mat or other).

For example, load the example analysis: File > Example Analysis > Basic Signals >
with db3 at level 5 → Sum of sines, and perform a compression or denoising operation
on the original signal. When you close the Denoising or Compression window, update
the synthesized signal by clicking Yes in the dialog box.

Then, from the Wavelet 1-D tool, select the File > Save > Signal menu option.

A dialog box appears allowing you to select a folder and filename for the MAT-file. For this
example, choose the name synthsig.

To load the signal into your workspace, simply type

load synthsig;

When the synthesized signal is obtained using any thresholding method except a global
one, the saved structure is

whos

Name Size Bytes Class
synthsig 1x1000 8000 double array
thrParams 1x5 580 cell array
wname 1x3 6 char array

The synthesized signal is given by the variable synthsig. In addition, the parameters of
the denoising or compression process are given by the wavelet name (wname) and the
level dependent thresholds contained in the thrParams variable, which is a cell array of
length 5 (same as the level of the decomposition).

For i from 1 to 5, thrParams{i} contains the lower and upper bounds of the
thresholding interval and the threshold value (since interval dependent thresholds are
allowed, see “1-D Adaptive Thresholding of Wavelet Coefficients” on page 6-48).

For example, for level 1,

thrParams{1}
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ans = 
    1.0e+03 *
    0.0010    1.0000    0.0014

When the synthesized signal is obtained using a global thresholding method, the saved
structure is

Name Size Bytes Class
synthsig 1x1000 8000 double array
valTHR 1x1 8 double array
wname 1x3 6 char array

where the variable valTHR contains the global threshold:

valTHR

valTHR =
    1.2922

Saving Discrete Wavelet Transform Coefficients

The Wavelet 1-D tool lets you save the coefficients of a discrete wavelet transform (DWT)
to disk. The toolbox creates a MAT-file in the current folder with a name you choose.

To save the DWT coefficients from the present analysis, use the menu option File > Save
> Coefficients.

A dialog box appears that lets you specify a folder and filename for storing the
coefficients.

Consider the example analysis:

File > Example Analysis > Basic Signals > with db1 at level 5 → Cantor curve.

After saving the wavelet coefficients to the file cantor.mat, load the variables in the
workspace:

load cantor 
whos
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Name Size Bytes Class
coefs 1x2190 17520 double array
longs 1x7 56 double array
thrParams 0x0 0 double array
wname 1x3 6 char array

Variable coefs contains the discrete wavelet coefficients. More precisely, in the above
example coefs is a 1-by-2190 vector of concatenated coefficients, and longs is a vector
giving the lengths of each component of coefs.

Variable wname contains the wavelet name and thrParams is empty since the
synthesized signal does not exist.

Saving Decompositions

The Wavelet 1-D tool lets you save the entire set of data from a discrete wavelet analysis
to disk. The toolbox creates a MAT-file in the current folder with a name you choose,
followed by the extension wa1 (wavelet analysis 1-D).

Open the Wavelet 1-D tool and load the example analysis:

File > Example Analysis > Basic Signals > with db3 at level 5 → Sum of sines

To save the data from this analysis, use the menu option File > Save > Decomposition.

A dialog box appears that lets you specify a folder and filename for storing the
decomposition data. Type the name wdecex1d.

After saving the decomposition data to the file wdecex1d.wa1, load the variables into
your workspace:

load wdecex1d.wa1 -mat 
whos 

Name Size Bytes Class
coefs 1x1023 8184 double array
data_name 1x6 12 char array
longs 1x7 56 double array
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Name Size Bytes Class
thrParams 0x0 0 double array
wave_name 1x3 6 char array

Note Save options are also available when performing denoising or compression inside
the Wavelet 1-D tool. In the Wavelet 1-D Denoising window, you can save denoised
signal and decomposition. The same holds true for the Wavelet 1-D Compression
window. This way, you can save many different trials from inside the Denoising and
Compression windows without going back to the main Wavelet 1-D window during a fine-
tuning process.

Note When saving a synthesized signal, a decomposition or coefficients to a MAT-file, the
mat file extension is not necessary. You can save approximations individually for each
level or save them all at once.

Export to Workspace

The Wavelet 1-D tool allows you to export your 1-D wavelet analysis to the MATLAB
workspace in a number of formats.

For example, load the example analysis for the freqbrk signal.

After the wavelet 1-D analysis loads, select File —> Export to Workspace.
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You have the option to

• Export Signal — This option exports the synthesized signal vector.
• Export Coefficients — This option exports the vector of wavelet and scaling
coefficients, the bookkeeping vector, and the analyzing wavelet in a structure array.
The wavelet and scaling coefficient and bookkeeping vectors are identical to the
output of wavedec.

• Export Decomposition — This option is identical to Export Coefficients
except that it also contains the name of the analyzed signal.

• Export All Approximations — This option exports a L-by-N matrix where L is the
value of Level and N is the length of the input signal. Each row of the matrix is the
projection onto the approximation space at the corresponding level. For example, the
first row of the matrix is the projection onto the approximation space at level 1.

• Export All Details — This option exports a L-by-N matrix where L is the value of
Level and N is the length of the input signal. Each row of the matrix is the projection
onto the detail (wavelet) space at the corresponding level. For example, the first row
of the matrix is the projection onto the detail space at level 1.

Loading Information into the Wavelet 1-D Tool

You can load signals, coefficients, or decompositions into the Wavelet Analyzer app. The
information you load may have been previously exported from the app and then
manipulated in the workspace, or it may have been information you generated initially
from the command line.

In either case, you must observe the strict file formats and data structures used by the
Wavelet 1-D tool, or else errors will result when you try to load information.
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Loading Signals

To load a signal you've constructed in your MATLAB workspace into the Wavelet 1-D
tool, save the signal in a MAT-file (with extension mat or other).

For instance, suppose you've designed a signal called warma and want to analyze it in the
Wavelet 1-D tool.

save warma warma

The workspace variable warma must be a vector.

sizwarma = size(warma)    
sizwarma = 
           1        1000

To load this signal into the Wavelet 1-D tool, use the menu option File > Load > Signal.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Note The first 1-D variable encountered in the file is considered the signal. Variables are
inspected in alphabetical order.

Loading Discrete Wavelet Transform Coefficients

To load discrete wavelet transform coefficients into the Wavelet 1-D tool, you must first
save the appropriate data in a MAT-file, which must contain at least the two variables
coefs and longs.

3 Discrete Wavelet Analysis

3-40



Variable coefs must be a vector of DWT coefficients (concatenated for the various
levels), and variable longs a vector specifying the length of each component of coefs, as
well as the length of the original signal.

After constructing or editing the appropriate data in your workspace, type

save myfile coefs longs

Use the File > Load > Coefficients menu option from the Wavelet 1-D tool to load the
data into the graphical tool.

A dialog box appears, allowing you to choose the folder and file in which your data reside.

Loading Decompositions

To load discrete wavelet transform decomposition data into the Wavelet 1-D graphical
interface, you must first save the appropriate data in a MAT-file (with extension wa1 or
other).

The MAT-file contains the following variables.

Variable Status Description
coefs Required Vector of concatenated DWT coefficients
longs Required Vector specifying lengths of components of

coefs and of the original signal
wave_name Required Character vector specifying name of wavelet

used for decomposition (e.g., db3)
data_name Optional Character vector specifying name of

decomposition

After constructing or editing the appropriate data in your workspace, type
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save myfile coefs longs wave_name

Use the File > Load > Decomposition menu option from the Wavelet 1-D tool to load
the decomposition data into the graphical tool.

A dialog box appears, allowing you to choose the folder and file in which your data reside.

Note When loading a signal, a decomposition or coefficients from a MAT-file, the
extension of this file is free. The mat extension is not necessary.
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Fast Wavelet Transform (FWT) Algorithm
In 1988, Mallat produced a fast wavelet decomposition and reconstruction algorithm [1].
The Mallat algorithm for discrete wavelet transform (DWT) is, in fact, a classical scheme
in the signal processing community, known as a two-channel subband coder using
conjugate quadrature filters or quadrature mirror filters (QMFs).

• The decomposition algorithm starts with signal s, next calculates the coordinates of A1
and D1, and then those of A2 and D2, and so on.

• The reconstruction algorithm called the inverse discrete wavelet transform (IDWT)
starts from the coordinates of AJ and DJ, next calculates the coordinates of AJ–1, and
then using the coordinates of AJ–1 and DJ–1 calculates those of AJ–2, and so on.

This section addresses the following topics:

• “Filters Used to Calculate the DWT and IDWT” on page 3-43
• “Algorithms” on page 3-46
• “Why Does Such an Algorithm Exist?” on page 3-51
• “1-D Wavelet Capabilities” on page 3-54
• “2-D Wavelet Capabilities” on page 3-55

Filters Used to Calculate the DWT and IDWT
For an orthogonal wavelet, in the multiresolution framework, we start with the scaling
function φ and the wavelet function ψ. One of the fundamental relations is the twin-scale
relation (dilation equation or refinement equation):

1
2ϕ x

2 = ∑
n ∈ Z

wnϕ(x− n)

All the filters used in DWT and IDWT are intimately related to the sequence

(wn)n∊Z

Clearly if φ is compactly supported, the sequence (wn) is finite and can be viewed as a
filter. The filter W, which is called the scaling filter (nonnormalized), is

• Finite Impulse Response (FIR)
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• Of length 2N
• Of sum 1
• Of norm 1

2
• Of norm 1
• A low-pass filter

For example, for the db3 scaling filter,

load db3 
db3
    db3 =
    0.2352   0.5706   0.3252  -0.0955  -0.0604   0.0249

sum(db3)
    ans =
         1.0000

norm(db3)
    ans =
         0.7071

From filter W, we define four FIR filters, of length 2N and of norm 1, organized as follows.

Filters Low-Pass High-Pass
Decomposition Lo_D Hi_D
Reconstruction Lo_R Hi_R

The four filters are computed using the following scheme.
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where qmf is such that Hi_R and Lo_R are quadrature mirror filters (i.e., Hi_R(k) = (–1) k
Lo_R(2N + 1 – k)) for k = 1, 2, ..., 2N.

Note that wrev flips the filter coefficients. So Hi_D and Lo_D are also quadrature mirror
filters. The computation of these filters is performed using orthfilt. Next, we illustrate
these properties with the db6 wavelet.

Load the Daubechies’ extremal phase scaling filter and plot the coefficients.

load db6;
subplot(421); stem(db6,'markerfacecolor',[0 0 1]);
title('Original scaling filter');

Use orthfilt to return the analysis (decomposition) and synthesis (reconstruction)
filters.

Obtain the discrete Fourier transforms (DFT) of the lowpass and highpass analysis filters.
Plot the modulus of the DFT.

LoDFT = fft(Lo_D,64);
HiDFT = fft(Hi_D,64);
freq = -pi+(2*pi)/64:(2*pi)/64:pi;
subplot(427); plot(freq,fftshift(abs(LoDFT)));
set(gca,'xlim',[-pi,pi]); xlabel('Radians/sample');
title('DFT Modulus - Lowpass Filter')
subplot(428); plot(freq,fftshift(abs(HiDFT)));
set(gca,'xlim',[-pi,pi]); xlabel('Radians/sample');
title('Highpass Filter');
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Algorithms
Given a signal s of length N, the DWT consists of log2N stages at most. Starting from s,
the first step produces two sets of coefficients: approximation coefficients cA1, and detail
coefficients cD1. These vectors are obtained by convolving s with the low-pass filter Lo_D
for approximation, and with the high-pass filter Hi_D for detail, followed by dyadic
decimation.

More precisely, the first step is
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The length of each filter is equal to 2L. The result of convolving a length N signal with a
length 2L filter is N+2L–1. Therefore, the signals F and G are of length N + 2L – 1. After
downsampling by 2, the coefficient vectors cA1 and cD1 are of length

N − 1
2 + L .

The next step splits the approximation coefficients cA1 in two parts using the same
scheme, replacing s by cA1 and producing cA2 and cD2, and so on.

So the wavelet decomposition of the signal s analyzed at level j has the following
structure: [cAj, cDj, ..., cD1].
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This structure contains for J = 3 the terminal nodes of the following tree.

• Conversely, starting from cAj and cDj, the IDWT reconstructs cAj–1, inverting the
decomposition step by inserting zeros and convolving the results with the
reconstruction filters.

• For images, a similar algorithm is possible for two-dimensional wavelets and scaling
functions obtained from 1-D wavelets by tensorial product.
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This kind of 2-D DWT leads to a decomposition of approximation coefficients at level j
in four components: the approximation at level j + 1 and the details in three
orientations (horizontal, vertical, and diagonal).

The following charts describe the basic decomposition and reconstruction steps for
images.
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So, for J = 2, the 2-D wavelet tree has the following form.
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Finally, let us mention that, for biorthogonal wavelets, the same algorithms hold but the
decomposition filters on one hand and the reconstruction filters on the other hand are
obtained from two distinct scaling functions associated with two multiresolution analyses
in duality.

In this case, the filters for decomposition and reconstruction are, in general, of different
odd lengths. This situation occurs, for example, for “splines” biorthogonal wavelets used
in the toolbox. By zero-padding, the four filters can be extended in such a way that they
will have the same even length.

Why Does Such an Algorithm Exist?
The previous paragraph describes algorithms designed for finite-length signals or images.
To understand the rationale, we must consider infinite-length signals. The methods for the
extension of a given finite-length signal are described in “Border Effects” on page 3-57.

Let us denote h = Lo_R and g = Hi_R and focus on the 1-D case.

We first justify how to go from level j to level j+1, for the approximation vector. This is the
main step of the decomposition algorithm for the computation of the approximations. The
details are calculated in the same way using the filter g instead of filter h.

Let (Ak
(j))k∊Z be the coordinates of the vector Aj:

A j = ∑
k

Ak( j)ϕ j, k

and Ak
(j+1) the coordinates of the vector Aj+1:

A j + 1 = ∑
k

Ak( j + 1)ϕ j + 1, k

Ak
(j+1) is calculated using the formula

Ak( j + 1) = ∑
n

hn− 2kAn( j)

This formula resembles a convolution formula.

The computation is very simple.

Let us define
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h(k) = h( − k),  and Fk
( j + 1) = ∑

n
hk− nAn( j) .

The sequence F(j+1) is the filtered output of the sequence A(j) by the filter h.

We obtain

Ak
(j+1) = F2k

(j+1)

We have to take the even index values of F. This is downsampling.

The sequence A(j+1) is the downsampled version of the sequence F(j+1).

The initialization is carried out using Ak
(0) = s(k), where s(k) is the signal value at time k.

There are several reasons for this surprising result, all of which are linked to the
multiresolution situation and to a few of the properties of the functions φj,k and ψj,k.

Let us now describe some of them.

1 The family (ϕ0, k, k ∈ Z) is formed of orthonormal functions. As a consequence for any
j, the family (ϕ j, k, k ∈ Z) is orthonormal.

2 The double indexed family

(ψ j, k, j ∈ Z, k ∈ Z)

is orthonormal.
3 For any j, the (ϕ j, k, k ∈ Z) are orthogonal to (ψ j′, k, j′ ≤ j, k ∈ Z).
4 Between two successive scales, we have a fundamental relation, called the twin-scale

relation.

Twin-Scale Relation for ϕ
ϕ1, 0 = ∑

k ∈ Z
hkϕ0, k ϕ j + 1, 0 = ∑

k ∈ Z
hkϕ j, k

This relation introduces the algorithm's h filter (hn = 2ωn). For more information,
see “Filters Used to Calculate the DWT and IDWT” on page 3-43.

5 We check that:
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a The coordinate of φj+1,0 on φj,k is hk and does not depend on j.
b The coordinate of φj+1,n on φj,k is equal to ϕ j + 1, n, ϕ j, k = hk− 2n.

6 These relations supply the ingredients for the algorithm.
7 Up to now we used the filter h. The high-pass filter g is used in the twin scales

relation linking the ψ and φ functions. Between two successive scales, we have the
following twin-scale fundamental relation.

Twin-Scale Relation Between ψ and ϕ
ψ1, 0 = ∑

k ∈ Z
gkϕ0, k ψ j + 1, 0 = ∑

k ∈ Z
gkϕ j, k

8 After the decomposition step, we justify now the reconstruction algorithm by building
it. Let us simplify the notation. Starting from A1 and D1, let us study A0 = A1 + Dj1.
The procedure is the same to calculate A = Aj+1 + Dj+1.

Let us define αn, δn, αk
0 by

A1 = ∑
n

anϕ1, n     D1 = ∑
n

δnψ1, n     A0 = ∑
k

ak
0ϕ0, k

Let us assess the αk
0 coordinates as

ak
0 = A0, ϕ0, k = A1 + D1, ϕ0, k = A1, ϕ0, k + D1, ϕ0, k

= ∑
n

an ϕ1, n, ϕ0, k + ∑
n

δn ψ1, n, ϕ0, k

= ∑
n

anhk− 2n + ∑
n

δngk− 2n

We will focus our study on the first sum ∑nanhk− 2n; the second sum ∑nδngk− 2n is
handled in a similar manner.

The calculations are easily organized if we note that (taking k = 0 in the previous
formulas, makes things simpler)

∑
n

anh−2n = … + a−1h2 + a0h0 + a1h−2 + a2h−4 + …

= … + a−1h2 + 0h1 + a0h0 + 0h−1 + a1h−2 + 0h−3 + a2h−4 + …

If we transform the (αn)sequence into a new sequence (αn)defined by
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      ..., α–1, 0, α0, 0, α1, 0, α2, 0, ... that is precisely

a2n = an, a2n + 1 = 0

Then

∑
n

anh−2n = ∑
n

anh−n

and by extension

∑
n

anhk− 2n = ∑
n

anhk− n

Since

ak
0 = ∑

n
anhk− n + ∑

n
δngk− n

the reconstruction steps are:

1 Replace the α and δ sequences by upsampled versions α˜ and δ inserting zeros.
2 Filter by h and g respectively.
3 Sum the obtained sequences.

1-D Wavelet Capabilities
Basic 1-D Objects

 Objects Description
Signal in original time s

Ak, 0 ≤ k ≤ j

Dk, 1 ≤ k ≤ j

Original signal

Approximation at level k

Detail at level k
Coefficients in scale-related
time

cAk, 1 ≤ k ≤ j

cDk, 1 ≤ k ≤ j

[cAj, cDj, ..., cD1]

Approximation coefficients at level k

Detail coefficients at level k

Wavelet decomposition at level j, j ≥ 1
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Analysis-Decomposition Capabilities

Purpose Input Output File
Single-level decomposition s cA1, cD1 dwt
Single-level decomposition cAj cAj+1, cDj+1 dwt
Decomposition s [cAj, cDj, ..., cD1] wavedec

Synthesis-Reconstruction Capabilities

Purpose Input Output File
Single-level reconstruction cA1, cD1 s or A0 idwt
Single-level reconstruction cAj+1, cDj+1 cAj idwt
Full reconstruction [cAj, cDj, ..., cD1] s or A0 waverec
Selective reconstruction [cAj, cDj, ..., cD1] Al, Dm wrcoef

Decomposition Structure Utilities

Purpose Input Output File
Extraction of detail coefficients [cAj, cDj, ..., cD1] cDk, 1 ≤ k ≤ j detcoef
Extraction of approximation
coefficients

[cAj, cDj, ..., cD1] cAk, 0≤ k ≤ j appcoef

Recomposition of the decomposition
structure

[cAj, cDj, ..., cD1] [cAk, cDk, ..., cD1] 1 ≤ k ≤
j

upwlev

To illustrate command-line mode for 1-D capabilities, see “1-D Analysis Using the
Command Line” on page 3-13. .

2-D Wavelet Capabilities
Basic 2-D Objects

 Objects Description
Image in original resolution s Original image

A0 Approximation at level 0
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 Objects Description
Ak, 1 ≤ k ≤ j Approximation at level k
Dk, 1 ≤ k ≤ j Details at level k

Coefficients in scale-related
resolution

cAk, 1 ≤ k ≤ j Approximation coefficients at level k
cDk, 1 ≤ k ≤ j Detail coefficients at level k
[cAj, cDj, ..., cD1] Wavelet decomposition at level j

Dk stands for Dk(h), Dk(v), Dk(d) , the horizontal, vertical, and diagonal details at level k.

The same holds for cDk, which stands for cDk(h), cDk(v), cDk(d) .

The 2-D files are the same as those for the 1-D case, but with a 2 appended on the end of
the command.

For example, idwt becomes idwt2. For more information, see “1-D Wavelet Capabilities”
on page 3-54.

To illustrate command-line mode for 2-D capabilities, see “2-D Analysis — Command Line”
on page 3-189..

References
[1] Mallat, S. G. “A Theory for Multiresolution Signal Decomposition: The Wavelet

Representation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence. Vol. 11, Issue 7, July 1989, pp. 674–693.
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Border Effects
Classically, the DWT is defined for sequences with length of some power of 2, and
different ways of extending samples of other sizes are needed. Methods for extending the
signal include zero-padding, smooth padding, periodic extension, and boundary value
replication (symmetrization).

The basic algorithm for the DWT is not limited to dyadic length and is based on a simple
scheme: convolution and downsampling. As usual, when a convolution is performed on
finite-length signals, border distortions arise.

Signal Extensions: Zero-Padding, Symmetrization, and
Smooth Padding
To deal with border distortions, the border should be treated differently from the other
parts of the signal.

Various methods are available to deal with this problem, referred to as “wavelets on the
interval” (see [CohDJV93] in “References”). These interesting constructions are effective
in theory but are not entirely satisfactory from a practical viewpoint.

Often it is preferable to use simple schemes based on signal extension on the boundaries.
This involves the computation of a few extra coefficients at each stage of the
decomposition process to get a perfect reconstruction. It should be noted that extension
is needed at each stage of the decomposition process.

Details on the rationale of these schemes are in Chapter 8 of the book Wavelets and Filter
Banks, by Strang and Nguyen (see [StrN96] in “References”).

The available signal extension modes are as follows (see dwtmode):

• Zero-padding ('zpd'): This method is used in the version of the DWT given in the
previous sections and assumes that the signal is zero outside the original support.

The disadvantage of zero-padding is that discontinuities are artificially created at the
border.

• Symmetrization ('sym'): This method assumes that signals or images can be
recovered outside their original support by symmetric boundary value replication.

It is the default mode of the wavelet transform in the toolbox.
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Symmetrization has the disadvantage of artificially creating discontinuities of the first
derivative at the border, but this method works well in general for images.

• Smooth padding of order 1 ('spd'or 'sp1'): This method assumes that signals or
images can be recovered outside their original support by a simple first-order
derivative extrapolation: padding using a linear extension fit to the first two and last
two values.

Smooth padding works well in general for smooth signals.
• Smooth padding of order 0 ('sp0'): This method assumes that signals or images

can be recovered outside their original support by a simple constant extrapolation. For
a signal extension this is the repetition of the first value on the left and last value on
the right.

• Periodic-padding (1) ('ppd'): This method assumes that signals or images can be
recovered outside their original support by periodic extension.

The disadvantage of periodic padding is that discontinuities are artificially created at
the border.

The DWT associated with these five modes is slightly redundant. But IDWT ensures a
perfect reconstruction for any of the five previous modes whatever the extension mode
used for DWT.

• Periodic-padding (2) ('per'): If the signal length is odd, the signal is first extended
by adding an extra-sample equal to the last value on the right. Then a minimal periodic
extension is performed on each side. The same kind of rule exists for images. This
extension mode is used for SWT (1-D & 2-D).

This last mode produces the smallest length wavelet decomposition. But the extension
mode used for IDWT must be the same to ensure a perfect reconstruction.

Before looking at an illustrative example, let us compare some properties of the
theoretical Discrete Wavelet Transform versus the actual DWT.

The theoretical DWT is applied to signals that are defined on an infinite length time
interval (Z). For an orthogonal wavelet, this transform has the following desirable
properties:

1 Norm preservation

Let cA and cD be the approximation and detail of the DWT coefficients of an infinite
length signal X. Then the l2–norm is preserved:
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‖X‖2 = ‖cA‖2 + ‖cD‖2

2 Orthogonality

Let A and D be the reconstructed approximation and detail. Then, A and D are
orthogonal and

‖X‖2 = ‖A‖2 + ‖D‖2

3 Perfect reconstruction

X = A + D

Since the DWT is applied to signals that are defined on a finite-length time interval,
extension is needed for the decomposition, and truncation is necessary for reconstruction.

To ensure the crucial property 3 (perfect reconstruction) for arbitrary choices of

• The signal length
• The wavelet
• The extension mode

the properties 1 and 2 can be lost. These properties hold true for an extended signal of
length usually larger than the length of the original signal. So only the perfect
reconstruction property is always preserved. Nevertheless if the DWT is performed using
the periodic extension mode ('per') and if the length of the signal is divisible by 2J, where
J is the maximum level decomposition, the properties 1, 2, and 3 remain true.

It is interesting to notice that if arbitrary extension is used, and decomposition performed
using the convolution-downsampling scheme, perfect reconstruction is recovered using
idwt or idwt2. This point is illustrated below.

% Set initial signal and get filters.
x = sin(0.3*[1:451]); w = 'db9';
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(w);
% In fact using a slightly redundant scheme, any signal
% extension strategy works well. 
% For example use random padding.
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lx = length(x); lf = length(Lo_D);
ex = [randn(1,lf) x randn(1,lf)];
axis([1 lx+2*lf -2 3])
subplot(211), plot(lf+1:lf+lx,x), title('Original signal')
axis([1 lx+2*lf -2 3])
subplot(212), plot(ex), title('Extended signal')
axis([1 lx+2*lf -2 3])

% Decomposition.
la = floor((lx+lf-1)/2);
ar = wkeep(dyaddown(conv(ex,Lo_D)),la);
dr = wkeep(dyaddown(conv(ex,Hi_D)),la);
% Reconstruction.
xr = idwt(ar,dr,w,lx);
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% Check perfect reconstruction.
err0 = max(abs(x-xr))

Now let us illustrate the differences between the first three methods both for 1-D and 2-D
signals.

Zero-Padding

Using the Wavelet Analysis app we will examine the effects of zero-padding.

1 From the MATLAB prompt, type

dwtmode('zpd')
2 From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.
3 Click the Wavelet 1-D menu item. The discrete wavelet analysis tool for 1-D signal

data appears.
4 From the File menu, choose the Example Analysis option and select Basic Signals

> with db2 at level 5 > Two nearby discontinuities.
5 Select Display Mode: Show and Scroll.

The detail coefficients clearly show the signal end effects.

Symmetric Extension
6 From the MATLAB prompt, type

dwtmode('sym')
7 Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for 1-D signal data appears.
8 From the File menu, choose the Example Analysis option and select Basic Signals

> with db2 at level 5 > Two nearby discontinuities.
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9 From the MATLAB prompt, type

dwtmode('spd')
10 Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for 1-D signal data appears.
11 From the File menu, choose the Example Analysis option and select Basic Signals

> with db2 at level 5 > Two nearby discontinuities.
12 Select Display Mode: Show and Scroll.

The detail coefficients show the signal end effects are not present, and the
discontinuities are well detected.

Let us now consider an image example.

Original Image

1 From the MATLAB prompt, type

load geometry;
% X contains the loaded image and 
% map contains the loaded colormap. 
nbcol = size(map,1);
colormap(pink(nbcol));
image(wcodemat(X,nbcol));
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Zero-Padding

Now we set the extension mode to zero-padding and perform a decomposition of the
image to level 3 using the sym4 wavelet. Then we reconstruct the approximation of
level 3.

2 From the MATLAB prompt, type

lev = 3; wname = 'sym4';
dwtmode('zpd')
[c,s] = wavedec2(X,lev,wname);
a = wrcoef2('a',c,s,wname,lev);
image(wcodemat(a,nbcol));
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Symmetric Extension

Now we set the extension mode to symmetric extension and perform a decomposition
of the image again to level 3 using the sym4 wavelet. Then we reconstruct the
approximation of level 3.

3 From the MATLAB prompt, type

dwtmode('sym')
[c,s] = wavedec2(X,lev,wname);
a = wrcoef2('a',c,s,wname,lev);
image(wcodemat(a,nbcol));

Smooth Padding

Now set the extension mode to smooth padding and perform a decomposition of the
image again to level 3 using the sym4 wavelet. Then reconstruct the approximation of
level 3.

4 From the MATLAB prompt, type

dwtmode('spd')
[c,s] = wavedec2(X,lev,wname);
a = wrcoef2('a',c,s,wname,lev);
image(wcodemat(a,nbcol));
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Nondecimated Discrete Stationary Wavelet Transforms
(SWTs)

We know that the classical DWT suffers a drawback: the DWT is not a time-invariant
transform. This means that, even with periodic signal extension, the DWT of a translated
version of a signal X is not, in general, the translated version of the DWT of X.

How to restore the translation invariance, which is a desirable property lost by the
classical DWT? The idea is to average some slightly different DWT, called ε-decimated
DWT, to define the stationary wavelet transform (SWT). This property is useful for several
applications such as breakdown points detection.

The main application of the SWT is denoising. For more information on the rationale, see
[CoiD95] in “References”. For examples, see “1-D Stationary Wavelet Transform” on page
3-73 and “2-D Stationary Wavelet Transform” on page 3-214.

The principle is to average several denoised signals. Each of them is obtained using the
usual denoising scheme (see “Wavelet Denoising and Nonparametric Function
Estimation” on page 6-2), but applied to the coefficients of an ε-decimated DWT.

Note The SWT is defined only for signals of length divisible by 2J, where J is the
maximum decomposition level. The SWT uses periodic (per) extension.

ε-Decimated DWT
What is an ε-decimated DWT?

There exist a lot of slightly different ways to handle the discrete wavelet transform. Let us
recall that the DWT basic computational step is a convolution followed by a decimation.
The decimation retains even indexed elements.

But the decimation could be carried out by choosing odd indexed elements instead of
even indexed elements. This choice concerns every step of the decomposition process, so
at every level we chose odd or even.

If we perform all the different possible decompositions of the original signal, we have 2J

different decompositions, for a given maximum level J.
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Let us denote by εj = 1 or 0 the choice of odd or even indexed elements at step j. Every
decomposition is labeled by a sequence of 0s and 1s: ε = ε1...,εJ. This transform is called
the ε-decimated DWT.

You can obtain the basis vectors of the ε-decimated DWT from those of the standard DWT
by applying a shift and corresponds to a special choice of the origin of the basis functions.

How to Calculate the ε-Decimated DWT: SWT
It is possible to calculate all the ε-decimated DWT for a given signal of length N, by
computing the approximation and detail coefficients for every possible sequence ε. Do
this using iteratively, a slightly modified version of the basic step of the DWT of the form:

[A,D] = dwt(X,wname,'mode','per','shift',e); 

The last two arguments specify the way to perform the decimation step. This is the
classical one for e = 0, but for e = 1 the odd indexed elements are retained by the
decimation.

Of course, this is not a good way to calculate all the ε-decimated DWT, because many
computations are performed many times. We shall now describe another way, which is the
stationary wavelet transform (SWT).

The SWT algorithm is very simple and is close to the DWT one. More precisely, for level 1,
all the ε-decimated DWT (only two at this level) for a given signal can be obtained by
convolving the signal with the appropriate filters as in the DWT case but without
downsampling. Then the approximation and detail coefficients at level 1 are both of size
N, which is the signal length. This can be visualized in the following figure.
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The general step j convolves the approximation coefficients at level j–1, with upsampled
versions of the appropriate original filters, to produce the approximation and detail
coefficients at level j. This can be visualized in the following figure.

Next, we illustrate how to extract a given ε-decimated DWT from the approximation and
detail coefficients structure of the SWT.

We decompose a sequence of height numbers with the SWT, at level J = 3, using an
orthogonal wavelet.

The function swt calculates successively the following arrays, where A(j,ε1,...,εj) or
D(j,ε1,...,εj) denotes an approximation or a detail coefficient at level j obtained for the ε-
decimated DWT characterized by ε=[ε1,...,εj].

Step 0 (Original Data)

A(0) A(0) A(0) A(0) A(0) A(0) A(0) A(0)
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Step 1

D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1)
A(1,0) A(1,1) A(1,0) A(1,1) A(1,0) A(1,1) A(1,0) A(1,1)

Step 2

D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1)
D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1) D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1)
A(2,0,0) A(2,1,0) A(2,0,1) A(2,1,1) A(2,0,0) A(2,1,0) A(2,0,1) A(2,1,1)

Step 3

D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1)
D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1) D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1)
D(3,0,0,0) D(3,1,0,0) D(3,0,1,0) D(3,1,1,0) D(3,0,0,1) D(3,1,0,1) D(3,0,1,1) D(3,1,1,1)
A(3,0,0,0) A(3,1,0,0) A(3,0,1,0) A(3,1,1,0) A(3,0,0,1) A(3,1,0,1) A(3,0,1,1) A(3,1,1,1)

Let j denote the current level, where j is also the current step of the algorithm. Then we
have the following abstract relations with εi = 0 or 1:

[tmpAPP,tmpDET] = 
dwt(A(j,ε1, ,ɛj),wname,'mode','per','shift',ɛj+1); 
A(j+1,ɛ1, ,ɛj,ɛj+1) = circshift(tmpAPP,-ɛj+1);
D(j+1,ɛ1, ,ɛj,ɛj+1) = circshift(tmpDET,-ɛj+1);

where circshift performs a ε-circular shift of the input vector. Therefore, if εj+1 = 0,
the circshift instruction is ineffective and can be suppressed.

Let ε = [ε1,...,εJ] with εi = 0 or 1. We have 2J = 23 = eight different ε-decimated DWTs at
level 3. Choosing ε, we can retrieve the corresponding ε-decimated DWT from the SWT
array.

Now, consider the last step, J = 3, and let [Cε,Lε] denote the wavelet decomposition
structure of an ε-decimated DWT for a given ε. Then, it can be retrieved from the SWT
decomposition structure by selecting the appropriate coefficients as follows:

Cε =
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A(3, ε1, ε2, ε3) D(3, ε1, ε2, ε3) D(2, ε1, ε2) D(2, ε1, ε2) D(1, ε1) D(1, ε1) D(1, ε1) D(1, ε1)

Lε = [1,1,2,4,8]

For example, the ε-decimated DWT corresponding to ε = [ε1, ε2, ε3] = [1,0,1] is shown in
bold in the sequence of arrays of the previous example.

This can be extended to the 2-D case. The algorithm for the stationary wavelet transform
for images is visualized in the following figure.
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Inverse Discrete Stationary Wavelet Transform (ISWT)
Each ε-decimated DWT corresponding to a given ε can be inverted.
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To reconstruct the original signal using a given ε-decimated DWT characterized by
[ε1,...,εJ], we can use the abstract algorithm

FOR j = J:-1:1
  A(j-1, ε1, ,ɛj-1) = ...
  idwt(A(j,ɛ1, ,ɛj),D(S,ɛ1, ,ɛj)],wname,'mode','per','shift',ɛj);
END

For each choice of ε = (ε1,...,εJ), we obtain the original signal A(0), starting from slightly
different decompositions, and capturing in different ways the main features of the
analyzed signal.

The idea of the inverse discrete stationary wavelet transform is to average the inverses
obtained for every ε-decimated DWT. This can be done recursively, starting from level J
down to level 1.

The ISWT is obtained with the following abstract algorithm:

FOR j = J:-1:1
    X0 = idwt(A(j,ɛ1, ,ɛj),D(j,ɛ1, ,ɛj)],wname, ...
            'mode','per','shift',0);
    X1 = idwt(A(j,ɛ1, ,ɛj),D(j,ɛ1, ,ɛj)],wname, ...
            'mode','per','shift',1);
    X1 = circshift(X1,-1);
    A(j-1, ɛ1, ,ɛj-1) = (X0+X1)/2;
END

Along the same lines, this can be extended to the 2-D case.

More About SWT
Some useful references for the Stationary Wavelet Transform (SWT) are [CoiD95],
[NasS95], and [PesKC96] in “References”.
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1-D Stationary Wavelet Transform
This topic takes you through the features of 1-D discrete stationary wavelet analysis using
the Wavelet Toolbox software. For more information see “Nondecimated Discrete
Stationary Wavelet Transforms (SWTs)” on page 3-66 in the Wavelet Toolbox User's Guide.

The toolbox provides these functions for 1-D discrete stationary wavelet analysis. For
more information on the functions, see the reference pages.

Analysis-Decomposition Functions
Function Name Purpose
swt Decomposition

Synthesis-Reconstruction Functions
Function Name Purpose
iswt Reconstruction

The stationary wavelet decomposition structure is more tractable than the wavelet one.
So the utilities, useful for the wavelet case, are not necessary for the stationary wavelet
transform (SWT).

In this section, you'll learn to

• Load a signal
• Perform a stationary wavelet decomposition of a signal
• Construct approximations and details from the coefficients
• Display the approximation and detail at level 1
• Regenerate a signal by using inverse stationary wavelet transform
• Perform a multilevel stationary wavelet decomposition of a signal
• Reconstruct the level 3 approximation
• Reconstruct the level 1, 2, and 3 details
• Reconstruct the level 1 and 2 approximations
• Display the results of a decomposition
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• Reconstruct the original signal from the level 3 decomposition
• Remove noise from a signal

Since you can perform analyses either from the command line or using the Wavelet
Analyzer app, this section has subsections covering each method.

The final subsection discusses how to exchange signal and coefficient information
between the disk and the graphical tools.

1-D Analysis Using the Command Line
This example involves a noisy Doppler test signal.

1 Load a signal.

From the MATLAB prompt, type

load noisdopp
2 Set the variables. Type

s = noisdopp; 

For the SWT, if a decomposition at level k is needed, 2^k must divide evenly into the
length of the signal. If your original signal does not have the correct length, you can
use the Signal Extension tool in the Wavelet Analysis app or the  wextend
function to extend it.

3 Perform a single-level Stationary Wavelet Decomposition.

Perform a single-level decomposition of the signal using the db1 wavelet. Type

[swa,swd] = swt(s,1,'db1');

This generates the coefficients of the level 1 approximation (swa) and detail (swd).
Both are of the same length as the signal. Type

whos

Name Size Bytes Class
noisdopp 1x1024 8192 double array

3 Discrete Wavelet Analysis

3-74



Name Size Bytes Class
s 1x1024 8192 double array
swa 1x1024 8192 double array
swd 1x1024 8192 double array

4 Display the coefficients of approximation and detail.

To display the coefficients of approximation and detail at level 1, type

subplot(1,2,1), plot(swa); title('Approximation cfs') 
subplot(1,2,2), plot(swd); title('Detail cfs')

5 Regenerate the signal by Inverse Stationary Wavelet Transform.

To find the inverse transform, type

A0 = iswt(swa,swd,'db1'); 

To check the perfect reconstruction, type

err = norm(s-A0)
err = 
 2.1450e-14

6 Construct and display approximation and detail from the coefficients.
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To construct the level 1 approximation and detail (A1 and D1) from the coefficients
swa and swd, type

nulcfs = zeros(size(swa));
A1 = iswt(swa,nulcfs,'db1');  
D1 = iswt(nulcfs,swd,'db1');

To display the approximation and detail at level 1, type

subplot(1,2,1), plot(A1); title('Approximation A1'); 
subplot(1,2,2), plot(D1); title('Detail D1');

7 Perform a multilevel Stationary Wavelet Decomposition.

To perform a decomposition at level 3 of the signal (again using the db1 wavelet),
type
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[swa,swd] = swt(s,3,'db1');

This generates the coefficients of the approximations at levels 1, 2, and 3 (swa) and
the coefficients of the details (swd). Observe that the rows of swa and swd are the
same length as the signal length. Type

clear A0 A1 D1 err nulcfs 
whos

Name Size Bytes Class
noisdopp 1x1024 8192 double array
s 1x1024 8192 double array
swa 3x1024 24576 double array
swd 3x1024 24576 double array

8 Display the coefficients of approximations and details.

To display the coefficients of approximations and details, type

kp = 0; 
for i = 1:3
    subplot(3,2,kp+1), plot(swa(i,:));
    title(['Approx. cfs level ',num2str(i)])
    subplot(3,2,kp+2), plot(swd(i,:));  
    title(['Detail cfs level ',num2str(i)])
    kp = kp + 2; 
end
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9 Reconstruct approximation at Level 3 From coefficients.

To reconstruct the approximation at level 3, type

mzero = zeros(size(swd)); 
A = mzero; 
A(3,:) = iswt(swa,mzero,'db1');

10 Reconstruct details from coefficients.

To reconstruct the details at levels 1, 2 and 3, type

D = mzero; 
for i = 1:3
    swcfs = mzero;
    swcfs(i,:) = swd(i,:);
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    D(i,:) = iswt(mzero,swcfs,'db1');
end

11 Reconstruct and display approximations at Levels 1 and 2 from approximation at
Level 3 and details at Levels 2 and 3.

To reconstruct the approximations at levels 2 and 3, type

A(2,:) = A(3,:) + D(3,:); 
A(1,:) = A(2,:) + D(2,:);

To display the approximations and details at levels 1, 2 and 3, type

kp = 0; 
for i = 1:3
    subplot(3,2,kp+1), plot(A(i,:));
    title(['Approx. level ',num2str(i)])
    subplot(3,2,kp+2), plot(D(i,:));
    title(['Detail level ',num2str(i)])
    kp = kp + 2;
end
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12 Remove noise by thresholding.

To denoise the signal, use the ddencmp command to calculate a default global
threshold. Use the wthresh command to perform the actual thresholding of the
detail coefficients, and then use the iswt command to obtain the denoised signal.

Note All methods for choosing thresholds in the 1-D Discrete Wavelet Transform
case are also valid for the 1-D Stationary Wavelet Transform, which are also those
used by the Wavelet Analysis app. This is also true for the 2-D transforms.

[thr,sorh] = ddencmp('den','wv',s); 
dswd = wthresh(swd,sorh,thr); 
clean = iswt(swa,dswd,'db1');
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To display both the original and denoised signals, type

subplot(2,1,1), plot(s); 
title('Original signal') 
subplot(2,1,2), plot(clean); 
title('denoised signal')

The obtained signal remains a little bit noisy. The result can be improved by considering
the decomposition of s at level 5 instead of level 3, and repeating steps 14 and 15. To
improve the previous denoising, type

[swa,swd] = swt(s,5,'db1'); 
[thr,sorh] = ddencmp('den','wv',s); 
dswd = wthresh(swd,sorh,thr);
clean = iswt(swa,dswd,'db1'); 
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subplot(2,1,1), plot(s); title('Original signal') 
subplot(2,1,2), plot(clean); title('denoised signal')

A second syntax can be used for the swt and iswt functions, giving the same results:

lev = 5; swc = swt(s,lev,'db1'); 
swcden = swc; 
swcden(1:end-1,:) = wthresh(swcden(1:end-1,:),sorh,thr);
clean = iswt(swcden,'db1');

You can obtain the same plot by using the same plot commands as in step 16 above.
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Interactive 1-D Stationary Wavelet Transform Denoising
Now we explore a strategy to denoise signals, based on the 1-D stationary wavelet
analysis using the Wavelet Analyzer app. The basic idea is to average many slightly
different discrete wavelet analyses.

1 Start the Stationary Wavelet Transform Denoising 1-D Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.

Click the SWT Denoising 1-D menu item. The discrete stationary wavelet transform
denoising tool for 1-D signals appears.

2 Load data.

At the MATLAB command prompt, type
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load noisbloc;

In the SWT Denoising 1-D tool, select File > Import Signal from Workspace.
When the Import from Workspace dialog box appears, select the noisbloc
variable. Click OK to import the noisy blocks signal.

3 Perform a Stationary Wavelet Decomposition.

Select the db1 wavelet from the Wavelet menu and select 5 from the Level menu,
and then click the Decompose Signal button. After a pause for computation, the tool
displays the stationary wavelet approximation and detail coefficients of the
decomposition. These are also called nondecimated coefficients since they are
obtained using the same scheme as for the DWT, but omitting the decimation step
(see “Fast Wavelet Transform (FWT) Algorithm” on page 3-43 in the Wavelet Toolbox
User's Guide).
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4 denoise the signal using the Stationary Wavelet Transform.

While a number of options are available for fine-tuning the denoising algorithm, we'll
accept the defaults of fixed form soft thresholding and unscaled white noise. The
sliders located on the right part of the window control the level-dependent
thresholds, indicated by yellow dotted lines running horizontally through the graphs
of the detail coefficients to the left of the window. The yellow dotted lines can also be
dragged directly using the left mouse button over the graphs.

Note that the approximation coefficients are not thresholded.

Click the denoise button.
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The result is quite satisfactory, but seems to be oversmoothed around the
discontinuities of the signal. This can be seen by looking at the residuals, and
zooming on a breakdown point, for example around position 800.

Selecting a Thresholding Method

Select hard for the thresholding mode instead of soft, and then click the denoise button.

The result is of good quality and the residuals look like a white noise sample. To
investigate this last point, you can get more information on residuals by clicking the
Residuals button.

Importing and Exporting from the Wavelet Analysis App
The tool lets you save the denoised signal to disk. The toolbox creates a MAT-file in the
current folder with a name of your choice.

To save the above denoised signal, use the menu option File > Save denoised Signal. A
dialog box appears that lets you specify a folder and filename for storing the signal. Type
the name dnoibloc. After saving the signal data to the file dnoibloc.mat, load the
variables into your workspace:

load dnoibloc 
whos

Name Size Bytes Class
dnoibloc 1x1024 8192 double array
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Name Size Bytes Class
thrParams 1x5 580 cell array
wname 1x3 6 char array

The denoised signal is given by dnoibloc. In addition, the parameters of the denoising
process are available. The wavelet name is contained in wname:

wname

wname =   
    db1

and the level dependent thresholds are encoded in thrParams, which is a cell array of
length 5 (the level of the decomposition). For i from 1 to 5, thrParams{i} contains the
lower and upper bounds of the interval of thresholding and the threshold value (since
interval dependent thresholds are allowed). For more information, see “1-D Adaptive
Thresholding of Wavelet Coefficients” on page 6-48.

For example, for level 1,

thrParams{1}
 ans =
      1.0e+03 *
      0.0010 1.0240 0.0041

Here the lower bound is 1, the upper bound is 1024, and the threshold value is 4.1. The
total time-interval is not segmented and the procedure does not use the interval
dependent thresholds.
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Wavelet Changepoint Detection
This example shows how to use wavelets to detect changes in the variance of a process.
Changes in variance are important because they often indicate that something
fundamental has changed about the data-generating mechanism.

The first example applies wavelet changepoint detection to a very old time series -- the
Nile river minima data for the years 622 to 1281 AD. The river-level minima were
measured at the Roda gauge near Cairo. Measurements are in meters.

Load and plot the data.

load nileriverminima
years = 622:1284;
figure
plot(years,nileriverminima)
title('Nile River Minimum Levels')
AX = gca;
AX.XTick = 622:100:1222;
grid on
xlabel('Year')
ylabel('Meters')
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Construction began on a new measuring device around 715 AD. Examining the data prior
to and after approximately 722 AD, there appears to be a change in the variability of the
data. You can use wavelets to explore the hypothesis that the variability of the
measurements has been affected by the introduction of a new measuring device.

Obtain a multiresolution analysis (MRA) of the data using the Haar wavelet.

wt = modwt(nileriverminima,'haar',4);
mra = modwtmra(wt,'haar');

Plot the MRA and focus on the level-one and level-two details.

figure
subplot(2,1,1)
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plot(years,mra(1,:))
title('Level 1 Details')
subplot(2,1,2)
plot(years,mra(2,:))
title('Level 2 Details')
AX = gca;
AX.XTick = 622:100:1222;
xlabel('Years')

Apply an overall change of variance test to the wavelet coefficients.

for JJ = 1:5
    pts_Opt = wvarchg(wt(JJ,:),2);
    changepoints{JJ} = pts_Opt;
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end
cellfun(@(x) ~isempty(x),changepoints,'uni',0)

ans =

  1x5 cell array

    {[1]}    {[0]}    {[0]}    {[0]}    {[0]}

Determine the year corresponding to the detected change of variance.

years(cell2mat(changepoints))

ans =

   721

Split the data into two segments. The first segment includes the years 622 to 721 when
the fine-scale wavelet coefficients indicate a change in variance. The second segment
contains the years 722 to 1284. Obtain unbiased estimates of the wavelet variance by
scale.

tspre = nileriverminima(1:100);
tspost = nileriverminima(101:end);
wpre = modwt(tspre,'haar',4);
wpost = modwt(tspost,'haar',4);
wvarpre = modwtvar(wpre,'haar',0.95,'table')
wvarpost = modwtvar(wpost,'haar',0.95,'table')

wvarpre =

  5x4 table

          NJ     Lower      Variance     Upper 
          __    ________    ________    _______

    D1    99     0.25199     0.36053    0.55846
    D2    97     0.15367     0.25149    0.48477
    D3    93    0.056137     0.11014    0.30622
    D4    85    0.018881    0.047427    0.26453
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    S4    85    0.017875      0.0449    0.25044

wvarpost =

  5x4 table

          NJ      Lower      Variance     Upper 
          ___    ________    ________    _______

    D1    562     0.11394     0.13354    0.15869
    D2    560    0.085288     0.10639    0.13648
    D3    556      0.0693    0.094168    0.13539
    D4    548    0.053644    0.081877    0.14024
    S4    548     0.24608     0.37558    0.64329

Compare the results.

Vpre = table2array(wvarpre);
Vpost = table2array(wvarpost);
Vpre = Vpre(1:end-1,2:end);
Vpost = Vpost(1:end-1,2:end);

Vpre(:,1) = Vpre(:,2)-Vpre(:,1);
Vpre(:,3) = Vpre(:,3)-Vpre(:,2);

Vpost(:,1) = Vpost(:,2)-Vpost(:,1);
Vpost(:,3) = Vpost(:,3)-Vpost(:,2);

figure
errorbar(1:4,Vpre(:,2),Vpre(:,1),Vpre(:,3),'ko',...
    'MarkerFaceColor',[0 0 0])
hold on
errorbar(1.5:4.5,Vpost(:,2),Vpost(:,1),Vpost(:,3),'b^',...
    'MarkerFaceColor',[0 0 1])
set(gca,'xtick',1.25:4.25)
set(gca,'xticklabel',{'2 Year','4 Years','8 Years','16 Years','32 Years'})
grid on
ylabel('Variance')
title('Wavelet Variance 622-721 and 722-1284 by Scale','fontsize',14)
legend('Years 622-721','Years 722-1284','Location','NorthEast')
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The wavelet variance indicates a significant change in variance between the 622-721 and
722-1284 data over scales of 2 and 4 years.

The above example used the Haar wavelet filter with only two coefficients because of
concern over boundary effects with the relatively small time series (100 samples from
622-721). If your data are approximately first or second-order difference stationary, you
can substitute the biased estimate using the 'reflection' boundary. This permits you to use
a longer wavelet filter without worrying about boundary coefficients. Repeat the analysis
using the default 'sym4' wavelet.

wpre = modwt(tspre,4,'reflection');
wpost = modwt(tspost,4,'reflection');
wvarpre = modwtvar(wpre,[],[],'EstimatorType','biased',...
    'Boundary','reflection','table');
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wvarpost = modwtvar(wpost,[],[],'EstimatorType','biased',...
    'Boundary','reflection','table');

Plot the results.

Vpre = table2array(wvarpre);
Vpost = table2array(wvarpost);
Vpre = Vpre(1:end-1,2:end);
Vpost = Vpost(1:end-1,2:end);

Vpre(:,1) = Vpre(:,2)-Vpre(:,1);
Vpre(:,3) = Vpre(:,3)-Vpre(:,2);

Vpost(:,1) = Vpost(:,2)-Vpost(:,1);
Vpost(:,3) = Vpost(:,3)-Vpost(:,2);

figure
errorbar(1:4,Vpre(:,2),Vpre(:,1),Vpre(:,3),'ko','MarkerFaceColor',[0 0 0])
hold on
errorbar(1.5:4.5,Vpost(:,2),Vpost(:,1),Vpost(:,3),'b^','MarkerFaceColor',[0 0 1])
set(gca,'xtick',1.25:4.25)
set(gca,'xticklabel',{'2 Years','4 Years', '8 Years', '16 Years','32 Years'})
grid on
ylabel('Variance')
title({'Wavelet Variance 622-721 and 722-1284 by Scale'; ...
    'Biased Estimate -- Reflection Boundary'},'fontsize',14)
legend('622-721','722-1284','Location','NorthEast')
hold off
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The conclusion is reinforced. There is a significant difference in the variance of the data
over scales of 2 and 4 years, but not at longer scales. You can conclude that something
has changed about the process variance.

In financial time series, you can use wavelets to detect changes in volatility. To illustrate
this, consider the quarterly chain-weighted U.S. real GDP data for 1974Q1 to 2012Q4. The
data were transformed by first taking the natural logarithm and then calculating the year-
over-year difference. Obtain the wavelet transform (MODWT) of the real GDP data down
to level six with the 'db2' wavelet. Examine the variance of the data and compare that to
the variances by scale obtained with the MODWT.

load GDPcomponents
realgdpwt = modwt(realgdp,'db2',6,'reflection');
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gdpmra = modwtmra(realgdpwt,'db2','reflection');
vardata = var(realgdp,1);
varwt = var(realgdpwt(:,1:numel(realgdp)),1,2);

In vardata you have the variance for the aggregate GDP time series. In varwt you have
the variance by scale for the MODWT. There are seven elements in varwt because you
obtained the MODWT down to level six resulting in six wavelet coefficient variances and
one scaling coefficient variance. Sum the variances by scale to see that the variance is
preserved. Plot the wavelet variances by scale ignoring the scaling coefficient variance.

totalMODWTvar = sum(varwt);
bar(varwt(1:end-1,:))
AX = gca;
AX.XTickLabels = {'[2 4)','[4 8)','[8 16)','[16 32)','[32 64)','[64 128)'};
xlabel('Quarters')
ylabel('Variance')
title('Wavelet Variance by Scale')
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Because this data is quarterly, the first scale captures variations between two and four
quarters, the second scale between four and eight, the third between 8 and 16, and so on.

From the MODWT and a simple bar plot, you see that cycles in the data between 8 and 32
quarters account for the largest variance in the GDP data. If you consider the wavelet
variances at these scales, they account for 57% of the variability in the GDP data. This
means that oscillations in the GDP over a period of 2 to 8 years account for most of the
variability seen in the time series.

Plot the level-one details, D1. These details capture oscillations in the data between two
and four quarters in duration.

helperFinancialDataExample1(gdpmra(1,:),years,...
    'Year over Year Real U.S. GDP - D1')
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Examining the level-one details, it appears there is a reduction of variance beginning in
the 1980s.

Test the level-one wavelet coefficients for significant variance changepoints.

pts_Opt = wvarchg(realgdpwt(1,1:numel(realgdp)),2);
years(pts_Opt)

ans =

        1982
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There is a variance changepoint identified in 1982. This example does not correct for the
delay introduced by the 'db2' wavelet at level one. However, that delay is only two
samples so it does not appreciably affect the results.

To assess changes in the volatility of the GDP data pre and post 1982, split the original
data into pre- and post-changepoint series. Obtain the wavelet transforms of the pre and
post datasets. In this case, the series are relatively short so use the Haar wavelet to
minimize the number of boundary coefficients. Compute unbiased estimates of the
wavelet variance by scale and plot the result.

tspre = realgdp(1:pts_Opt);
tspost = realgdp(pts_Opt+1:end);
wtpre = modwt(tspre,'haar',5);
wtpost = modwt(tspost,'haar',5);
prevar = modwtvar(wtpre,'haar','table');
postvar = modwtvar(wtpost,'haar','table');
xlab = {'[2Q,4Q)','[4Q,8Q)','[8Q,16Q)','[16Q,32Q)','[32Q,64Q)'};
helperFinancialDataExampleVariancePlot(prevar,postvar,'table',xlab)
title('Wavelet Variance By Scale')
legend('Pre 1982 Q2','Post 1982 Q2','Location','NorthWest')
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From the preceding plot, it appears there are significant differences between the
pre-1982Q2 and post-1982Q2 variances at scales between 2 and 16 quarters.

Because the time series are so short in this example, it can be useful to use biased
estimates of the variance. Biased estimates do not remove boundary coefficients. Use a
'db2' wavelet filter with four coefficients.

wtpre = modwt(tspre,'db2',5,'reflection');
wtpost = modwt(tspost,'db2',5,'reflection');
prevar = modwtvar(wtpre,'db2',0.95,'EstimatorType','biased','table');
postvar = modwtvar(wtpost,'db2',0.95,'EstimatorType','biased','table');
xlab = {'[2Q,4Q)','[4Q,8Q)','[8Q,16Q)','[16Q,32Q)','[32Q,64Q)'};
figure
helperFinancialDataExampleVariancePlot(prevar,postvar,'table',xlab)
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title('Wavelet Variance By Scale')
legend('Pre 1982 Q2','Post 1982 Q2','Location','NorthWest')

The results confirm our original finding that there is a reduction in volatility over scales
from 2 to 16 quarters.

Using the wavelet transform allows you to focus on scales where the change in volatility
is localized. To see this, examine a plot of the raw data along with the level-one wavelet
details.

subplot(2,1,1)
helperFinancialDataExample1(realgdp,years,...
    'Year over Year Real U.S. GDP -- Raw Data')
subplot(2,1,2)
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helperFinancialDataExample1(gdpmra(1,:),years,...
    'Year over Year Real U.S. GDP -- Wavelet Level 1 Details')

The shaded region is referred to as the "Great Moderation" signifying a period of
decreased macroeconomic volatility in the U.S. beginning in the mid 1980s.

Examining the aggregate data, it is not clear that there is in fact reduced volatility in this
period. However, the wavelet level-one details uncover the change in volatility.
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Scale-Localized Volatility and Correlation
There are a number of different variations of the wavelet transform. This example focuses
on the maximal overlap discrete wavelet transform (MODWT). The MODWT is an
undecimated wavelet transform over dyadic (powers of two) scales, which is frequently
used with financial data. One nice feature of the MODWT for time series analysis is that it
partitions the data variance by scale. To illustrate this, consider the quarterly chain-
weighted U.S. real GDP data for 1974Q1 to 2012Q4. The data were transformed by first
taking the natural logarithm and then calculating the year-over-year difference. Obtain
the MODWT of the real GDP data down to level six with the 'db2' wavelet. Examine the
variance of the data and compare that to the variances by scale obtained with the
MODWT.

load GDPcomponents
realgdpwt = modwt(realgdp,'db2',6);
vardata = var(realgdp,1);
varwt = var(realgdpwt,1,2);

In vardata you have the variance for the aggregate GDP time series. In varwt you have
the variance by scale for the MODWT. There are seven elements in varwt because you
obtained the MODWT down to level six resulting in six wavelet coefficient variances and
one scaling coefficient variance. Sum the variances by scale to see that the variance is
preserved. Plot the wavelet variances by scale ignoring the scaling coefficient variance.

totalMODWTvar = sum(varwt);
bar(varwt(1:end-1,:))
AX = gca;
AX.XTickLabels = {'[2 4)','[4 8)','[8 16)','[16 32)','[32 64)','[64 128)'};
xlabel('Quarters')
ylabel('Variance')
title('Wavelet Variance by Scale')
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Because this data is quarterly, the first scale captures variations between two and four
quarters, the second scale between four and eight, the third between 8 and 16, and so on.

From the MODWT and a simple bar plot, you see that cycles in the data between 8 and 32
quarters account for the largest variance in the GDP data. If you consider the wavelet
variances at these scales, they account for 57% of the variability in the GDP data. This
means that oscillations in the GDP over a period of 2 to 8 years account for most of the
variability seen in the time series.

Wavelet analysis can often reveal changes in volatility not evident in aggregate data.
Begin with a plot of the GDP data.

helperFinancialDataExample1(realgdp,years,'Year over Year Real U.S. GDP')
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The shaded region is referred to as the "Great Moderation" signifying a period of
decreased macroeconomic volatility in the U.S. beginning in the mid 1980s.

Examining the aggregate data, it is not clear that there is in fact reduced volatility in this
period. Use wavelets to investigate this by first obtaining a multiresolution analysis of the
real GDP data using the 'db2' wavelet down to level 6.

realgdpwt = modwt(realgdp,'db2',6,'reflection');
gdpmra = modwtmra(realgdpwt,'db2','reflection');

Plot the level-one details, D1. These details capture oscillations in the data between two
and four quarters in duration.
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helperFinancialDataExample1(gdpmra(1,:),years,...
    'Year over Year Real U.S. GDP - D1')

Examining the level-one details, it appears there is a reduction of variance in the period
of the Great Moderation.

Test the level-one wavelet coefficients for significant variance changepoints.

[pts_Opt,kopt,t_est] = wvarchg(realgdpwt(1,1:numel(realgdp)),2);
years(pts_Opt)

ans =
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        1982

There is a variance changepoint identified in 1982. This example does not correct for the
delay introduced by the 'db2' wavelet at level one. However, that delay is only two
samples so it does not appreciably affect the results.

To assess changes in the volatility of the GDP data pre and post 1982, split the original
data into pre- and post-changepoint series. Obtain the wavelet transforms of the pre and
post datasets. In this case, the series are relatively short so use the Haar wavelet to
minimize the number of boundary coefficients. Compute unbiased estimates of the
wavelet variance by scale and plot the result.

tspre = realgdp(1:pts_Opt);
tspost = realgdp(pts_Opt+1:end);
wtpre = modwt(tspre,'haar',5);
wtpost = modwt(tspost,'haar',5);
prevar = modwtvar(wtpre,'haar','table');
postvar = modwtvar(wtpost,'haar','table');
xlab = {'[2Q,4Q)','[4Q,8Q)','[8Q,16Q)','[16Q,32Q)','[32Q,64Q)'};
helperFinancialDataExampleVariancePlot(prevar,postvar,'table',xlab)
title('Wavelet Variance By Scale');
legend('Pre 1982 Q2','Post 1982 Q2','Location','NorthWest');
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From the preceding plot, it appears there are significant differences between the
pre-1982Q2 and post-1982Q2 variances at scales between 2 and 16 quarters.

Because the time series are so short in this example, it can be useful to use biased
estimates of the variance. Biased estimates do not remove boundary coefficients. Use a
'db2' wavelet filter with four coefficients.

wtpre = modwt(tspre,'db2',5,'reflection');
wtpost = modwt(tspost,'db2',5,'reflection');
prevar = modwtvar(wtpre,'db2',0.95,'EstimatorType','biased','table');
postvar = modwtvar(wtpost,'db2',0.95,'EstimatorType','biased','table');
xlab = {'[2Q,4Q)','[4Q,8Q)','[8Q,16Q)','[16Q,32Q)','[32Q,64Q)'};
figure;
helperFinancialDataExampleVariancePlot(prevar,postvar,'table',xlab)
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title('Wavelet Variance By Scale');
legend('Pre 1982 Q2','Post 1982 Q2','Location','NorthWest');

The results confirm our original finding that the Great Moderation is manifested in
volatility reductions over scales from 2 to 16 quarters.

You can also use wavelets to analyze correlation between two datasets by scale. Examine
the correlation between the aggregate data on government spending and private
investment. The data cover the same period as the real GDP data and are transformed in
the exact same way.

[rho,pval] = corrcoef(privateinvest,govtexp);
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Government spending and personal investment demonstrate a weak, but statistically
significant, negative correlation of -0.215. Repeat this analysis using the MODWT.

wtPI = modwt(privateinvest,'db2',5,'reflection');
wtGE = modwt(govtexp,'db2',5,'reflection');
wcorrtable = modwtcorr(wtPI,wtGE,'db2',0.95,'reflection','table');
display(wcorrtable)

wcorrtable =

  6x6 table

          NJ      Lower        Rho         Upper        Pvalue      AdjustedPvalue
          ___    ________    ________    __________    _________    ______________

    D1    257    -0.29187    -0.12602      0.047192       0.1531         0.7502   
    D2    251    -0.54836    -0.35147      -0.11766    0.0040933       0.060171   
    D3    239    -0.62443    -0.35248    -0.0043207     0.047857        0.35175   
    D4    215    -0.70466    -0.32112       0.20764      0.22523        0.82773   
    D5    167    -0.63284     0.12965       0.76448      0.75962              1   
    S5    167    -0.63428     0.12728       0.76347      0.76392              1   

The multiscale correlation available with the MODWT shows a significant negative
correlation only at scale 2, which corresponds to cycles in the data between 4 and 8
quarters. Even this correlation is only marginally significant when adjusting for multiple
comparisons.

The multiscale correlation analysis reveals that the slight negative correlation in the
aggregate data is driven by the behavior of the data over scales of four to eight quarters.
When you consider the data over different time periods (scales), there is no significant
correlation.

With financial data, there is often a leading or lagging relationship between variables. In
those cases, it is useful to examine the cross-correlation sequence to determine if lagging
one variable with respect to another maximizes their cross-correlation. To illustrate this,
consider the correlation between two components of the GDP -- personal consumption
expenditures and gross private domestic investment.

piwt = modwt(privateinvest,'fk8',5);
pcwt = modwt(pc,'fk8',5);
figure;
modwtcorr(piwt,pcwt,'fk8')
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Personal expenditure and personal investment are negatively correlated over a period of
2-4 quarters. At longer scales, there is a strong positive correlation between personal
expenditure and personal investment. Examine the wavelet cross-correlation sequence at
the scale representing 2-4 quarter cycles.

[xcseq,xcseqci,lags] = modwtxcorr(piwt,pcwt,'fk8');
zerolag = floor(numel(xcseq{1})/2)+1;
plot(lags{1}(zerolag:zerolag+20),xcseq{1}(zerolag:zerolag+20));
hold on;
plot(lags{1}(zerolag:zerolag+20),xcseqci{1}(zerolag:zerolag+20,:),'r--');
xlabel('Lag (Quarters)');
grid on;
title('Wavelet Cross-Correlation Sequence -- [2Q,4Q)');
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The finest-scale wavelet cross-correlation sequence shows a peak positive correlation at a
lag of one quarter. This indicates that personal investment lags personal expenditures by
one quarter.
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R Wave Detection in the ECG
This example shows how to use wavelets to analyze electrocardiogram (ECG) signals.
ECG signals are frequently nonstationary meaning that their frequency content changes
over time. These changes are the events of interest.

Wavelets decompose signals into time-varying frequency (scale) components. Because
signal features are often localized in time and frequency, analysis and estimation are
easier when working with sparser (reduced) representations.

The QRS complex consists of three deflections in the ECG waveform. The QRS complex
reflects the depolarization of the right and left ventricles and is the most prominent
feature of the human ECG.

Load and plot an ECG waveform where the R peaks of the QRS complex have been
annotated by two or more cardiologists. The ECG data and annotations are taken from the
MIT-BIH Arrhythmia Database. The data are sampled at 360 Hz.

load mit200
figure
plot(tm,ecgsig)
hold on
plot(tm(ann),ecgsig(ann),'ro')
xlabel('Seconds')
ylabel('Amplitude')
title('Subject - MIT-BIH 200')
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You can use wavelets to build an automatic QRS detector for use in applications like R-R
interval estimation.

There are two keys for using wavelets as general feature detectors:

• The wavelet transform separates signal components into different frequency bands
enabling a sparser representation of the signal.

• You can often find a wavelet which resembles the feature you are trying to detect.

The 'sym4' wavelet resembles the QRS complex, which makes it a good choice for QRS
detection. To illustrate this more clearly, extract a QRS complex and plot the result with a
dilated and translated 'sym4' wavelet for comparison.
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qrsEx = ecgsig(4560:4810);
[mpdict,~,~,longs] = wmpdictionary(numel(qrsEx),'lstcpt',{{'sym4',3}});
figure
plot(qrsEx)
hold on
plot(2*circshift(mpdict(:,11),[-2 0]),'r')
axis tight
legend('QRS Complex','Sym4 Wavelet')
title('Comparison of Sym4 Wavelet and QRS Complex')

Use the maximal overlap discrete wavelet transform (MODWT) to enhance the R peaks in
the ECG waveform. The MODWT is an undecimated wavelet transform, which handles
arbitrary sample sizes.
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First, decompose the ECG waveform down to level 5 using the default 'sym4' wavelet.
Then, reconstruct a frequency-localized version of the ECG waveform using only the
wavelet coefficients at scales 4 and 5. The scales correspond to the following approximate
frequency bands.

• Scale 4 -- [11.25, 22.5) Hz
• Scale 5 -- [5.625, 11.25) Hz.

This covers the passband shown to maximize QRS energy.

wt = modwt(ecgsig,5);
wtrec = zeros(size(wt));
wtrec(4:5,:) = wt(4:5,:);
y = imodwt(wtrec,'sym4');

Use the squared absolute values of the signal approximation built from the wavelet
coefficients and employ a peak finding algorithm to identify the R peaks.

If you have the Signal Processing Toolbox™, you can use findpeaks to locate the peaks.
Plot the R-peak waveform obtained with the wavelet transform annotated with the
automatically-detected peak locations.

y = abs(y).^2;
[qrspeaks,locs] = findpeaks(y,tm,'MinPeakHeight',0.35,...
    'MinPeakDistance',0.150);
figure
plot(tm,y)
hold on
plot(locs,qrspeaks,'ro')
xlabel('Seconds')
title('R Peaks Localized by Wavelet Transform with Automatic Annotations')
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Add the expert annotations to the R-peak waveform. Automatic peak detection times are
considered accurate if within 150 msec of the true peak (±75 msec).

plot(tm(ann),y(ann),'k*')
title('R peaks Localized by Wavelet Transform with Expert Annotations')
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At the command line, you can compare the values of tm(ann) and locs, which are the
expert times and automatic peak detection times respectively. Enhancing the R peaks
with the wavelet transform results in a hit rate of 100% and no false positives. The
calculated heart rate using the wavelet transform is 88.60 beats/minute compared to
88.72 beats/minute for the annotated waveform.

If you try to work on the square magnitudes of the original data, you find the capability of
the wavelet transform to isolate the R peaks makes the detection problem much easier.
Working on the raw data can cause misidentifications such as when the squared S-wave
peak exceeds the R-wave peak around 10.4 seconds.

figure
plot(tm,ecgsig,'k--')
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hold on
plot(tm,y,'r','linewidth',1.5)
plot(tm,abs(ecgsig).^2,'b')
plot(tm(ann),ecgsig(ann),'ro','markerfacecolor',[1 0 0])
set(gca,'xlim',[10.2 12])
legend('Raw Data','Wavelet Reconstruction','Raw Data Squared', ...
    'Location','SouthEast');
xlabel('Seconds')

Using findpeaks on the squared magnitudes of the raw data results in twelve false
positives.

[qrspeaks,locs] = findpeaks(ecgsig.^2,tm,'MinPeakHeight',0.35,...
    'MinPeakDistance',0.150);
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In addition to switches in polarity of the R peaks, the ECG is often corrupted by noise.

load mit203
figure
plot(tm,ecgsig)
hold on
plot(tm(ann),ecgsig(ann),'ro')
xlabel('Seconds')
ylabel('Amplitude')
title('Subject - MIT-BIH 203 with Expert Annotations')

Use the MODWT to isolate the R peaks. Use findpeaks to determine the peak locations.
Plot the R-peak waveform along with the expert and automatic annotations.
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wt = modwt(ecgsig,5);
wtrec = zeros(size(wt));
wtrec(4:5,:) = wt(4:5,:);
y = imodwt(wtrec,'sym4');
y = abs(y).^2;
[qrspeaks,locs] = findpeaks(y,tm,'MinPeakHeight',0.1,...
    'MinPeakDistance',0.150);
figure
plot(tm,y)
title('R-Waves Localized by Wavelet Transform')
hold on
hwav = plot(locs,qrspeaks,'ro');
hexp = plot(tm(ann),y(ann),'k*');
xlabel('Seconds')
legend([hwav hexp],'Automatic','Expert','Location','NorthEast');
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The hit rate is again 100% with zero false alarms.

The previous examples used a very simple wavelet QRS detector based on a signal
approximation constructed from modwt. The goal was to demonstrate the ability of the
wavelet transform to isolate signal components, not to build the most robust wavelet-
transform-based QRS detector. It is possible, for example, to exploit the fact that the
wavelet transform provides a multiscale analysis of the signal to enhance peak detection.
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Wavelet Cross-Correlation for Lead-Lag Analysis
This example shows how to use wavelet cross-correlation to measure similarity between
two signals at different scales.

Wavelet cross-correlation is simply a scale-localized version of the usual cross-correlation
between two signals. In cross-correlation, you determine the similarity between two
sequences by shifting one relative to the other, multiplying the shifted sequences element
by element and summing the result. For deterministic sequences, you can write this as an
ordinary inner product: < xn, yn− k >n = ∑

n
xny‾n− k where xn and yn are sequences

(signals) and the bar denotes complex conjugation. The variable, k, is the lag variable and
represents the shift applied to yn. If both xn and yn are real, the complex conjugate is not
necessary. Assume that yn is the same sequence as xn but delayed by L>0 samples, where
L is an integer. For concreteness, assume yn = xn− 10. If you express yn in terms of xn
above, you obtain < xn, xn− 10 − k >n = ∑

n
xnx‾n− 10 − k. By the Cauchy-Schwartz inequality,

the above is maximized when k = − 10. This means if you left shift (advance) yn by 10
samples, you get the maximum cross-correlation sequence value. If xn is a L-delayed
version of yn, xn = yn− L, then the cross-correlation sequence is maximized at k = L.

If you have the Signal Processing Toolbox™, you can show this by using xcorr. Create a
triangular signal consisting of 20 samples. Create a noisy shifted version of this signal.
The shift in the peak of the triangle is 3 samples. Plot the x and y sequences.

x = triang(20);
rng default;
y = [zeros(3,1);x]+0.3*randn(length(x)+3,1);

subplot(2,1,1)
stem(x,'filled')
axis([0 22 -1 2])
title('Input Sequence')

subplot(2,1,2)
stem(y,'filled')
axis([0 22 -1 2])
title('Output Sequence')
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Use xcorr to obtain the cross-correlation sequence and determine the lag where the
maximum is obtained.

[xc,lags] = xcorr(x,y);
[~,I] = max(abs(xc));
figure
stem(lags,xc,'filled')
legend(sprintf('Maximum at lag %d',lags(I)))
title('Sample Cross-Correlation Sequence')
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The maximum is found at a lag of -3. The signal y is the second input to xcorr and it is a
delayed version of x. You have to shift y 3 samples to the left (a negative shift) to
maximize the cross correlation. If you reverse the roles of x and y as inputs to xcorr, the
maximum lag now occurs at a positive lag.

[xc,lags] = xcorr(y,x);
[~,I] = max(abs(xc));
figure
stem(lags,xc,'filled')
legend(sprintf('Maximum at lag %d',lags(I)))
title('Sample Cross-Correlation Sequence')
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x is an advanced version of y and you delay x by three samples to maximize the cross
correlation.

modwtxcorr is the scale-based version of xcorr. To use modwtxcorr, you first obtain
the nondecimated wavelet transforms.

Apply wavelet cross-correlation to two signals that are shifted versions of each other.
Construct two exponentially-damped 200-Hz sine waves with additive noise. The x signal
has its time center at t = 0 . 2 seconds while y is centered at t = 0 . 5 seconds.

t = 0:1/2000:1-1/2000;
x = sin(2*pi*200*t).*exp(-50*pi*(t-0.2).^2)+0.1*randn(size(t));
y = sin(2*pi*200*t).*exp(-50*pi*(t-0.5).^2)+0.1*randn(size(t));
figure
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plot(t,x)
hold on
plot(t,y)
xlabel('Seconds')
ylabel('Amplitude')
grid on
legend('x','y')

You see that x and y are very similar except that y is delayed by 0.3 seconds. Obtain the
nondecimated wavelet transform of x and y down to level 5 using the Fejer-Korovkin (14)
wavelet. The wavelet coefficients at level 3 with a sampling frequency of 2 kHz are an
approximate [2000/24, 2000/23) bandpass filtering of the inputs. The frequency

 Wavelet Cross-Correlation for Lead-Lag Analysis

3-129



localization of the Fejer-Korovkin filters ensures that this bandpass approximation is quite
good.

wx = modwt(x,'fk14',5);
wy = modwt(y,'fk14',5);

Obtain the wavelet cross-correlation sequences for the wavelet transforms of x and y.
Plot the level 3 wavelet cross-correlation sequence for 2000 lags centered at zero lag.
Multiply the lags by the sampling period to obtain a meaningful time axis.

[xc,~,lags] = modwtxcorr(wx,wy,'fk14');
lev = 3;
zerolag = floor(numel(xc{lev})/2+1);
tlag = lags{lev}(zerolag-999:zerolag+1000).*(1/2000);
figure
plot(tlag,xc{lev}(zerolag-999:zerolag+1000))
title('Wavelet Cross-Correlation Sequence (level 3)')
xlabel('Time')
ylabel('Cross-Correlation Coefficient')
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The cross-correlation sequence peaks at a delay of -0.3 seconds. The wavelet transform of
y is the second input to modwtxcorr. Because the second input of modwtxcorr is shifted
relative to the first, the peak correlation occurs at a negative delay. You have to left shift
(advance) the cross-correlation sequence to align the time series. If you reverse the roles
of the inputs to modwtxcorr, you obtain the peak correlation at a positive lag.

[xc,~,lags] = modwtxcorr(wy,wx,'fk14');
lev = 3;
zerolag = floor(numel(xc{lev})/2+1);
tlag = lags{lev}(zerolag-999:zerolag+1000).*(1/2000);
figure
plot(tlag,xc{lev}(zerolag-999:zerolag+1000))
title('Wavelet Cross-Correlation Sequence (level 3)')
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xlabel('Time')
ylabel('Cross-Correlation Coefficient')

To show that wavelet cross-correlation enables scale(frequency)-localized correlation, plot
the cross-correlation sequences at levels 1 and 5.

lev = 1;
zerolag = floor(numel(xc{lev})/2+1);
tlag = lags{lev}(zerolag-999:zerolag+1000).*(1/2000);
plot(tlag,xc{lev}(zerolag-999:zerolag+1000))
title('Wavelet Cross-Correlation Sequence (level 1)')
xlabel('Time')
ylabel('Cross-Correlation Coefficient')

3 Discrete Wavelet Analysis

3-132



figure
lev = 5;
zerolag = floor(numel(xc{lev})/2+1);
tlag = lags{lev}(zerolag-999:zerolag+1000).*(1/2000);
plot(tlag,xc{lev}(zerolag-999:zerolag+1000))
title('Wavelet Cross-Correlation Sequence (level 5)')
xlabel('Time')
ylabel('Cross-Correlation Coefficient')
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The wavelet cross-correlation sequences at levels 1 and 5 do not show any evidence of the
exponentially-weighted sinusoids due to the bandpass nature of the wavelet transform.

With financial data, there is often a leading or lagging relationship between variables. In
those cases, it is useful to examine the cross-correlation sequence to determine if lagging
one variable with respect to another maximizes their cross-correlation. To illustrate this,
consider the correlation between two components of the GDP -- personal consumption
expenditures and gross private domestic investment. The data is quarterly chain-weighted
U.S. real GDP data for 1974Q1 to 2012Q4. The data were transformed by first taking the
natural logarithm and then calculating the year-over-year difference. Look at the
correlation between two components of the GDP -- personal consumption expenditures,
pc, and gross private domestic investment, privateinvest.
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load GDPcomponents
piwt = modwt(privateinvest,'fk8',5);
pcwt = modwt(pc,'fk8',5);
figure
modwtcorr(piwt,pcwt,'fk8')

Personal expenditure and personal investment are negatively correlated over a period of
2-4 quarters. At longer scales, there is a strong positive correlation between personal
expenditure and personal investment. Examine the wavelet cross-correlation sequence at
the scale representing 2-4 quarter cycles. Plot the cross-correlation sequence along with
95% confidence intervals.

[xcseq,xcseqci,lags] = modwtxcorr(piwt,pcwt,'fk8');
zerolag = floor(numel(xcseq{1})/2)+1;
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figure
plot(lags{1}(zerolag:zerolag+20),xcseq{1}(zerolag:zerolag+20))
hold on
plot(lags{1}(zerolag:zerolag+20),xcseqci{1}(zerolag:zerolag+20,:),'r--')
xlabel('Lag (Quarters)')
ylabel('Cross-Correlation')
grid on
title({'Wavelet Cross-Correlation Sequence -- [2Q,4Q)'; ...
    'Personal Consumption and Private Investment'})

The finest-scale wavelet cross-correlation sequence shows a peak positive correlation at a
lag of one quarter. This indicates that personal investment lags personal expenditures by
one quarter. If you take that lagging relationship into account, then there is a positive
correlation between the GDP components at all scales.
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1-D Multisignal Analysis
This section takes you through the features of 1-D multisignal wavelet analysis,
compression and denoising using the Wavelet Toolbox software. The rationale for each
topic is the same as in the 1-D single signal case.

The toolbox provides the following functions for multisignal analysis.

Analysis-Decomposition and Synthesis-Reconstruction Functions

Function Name Purpose
mdwtdec Multisignal wavelet decomposition
mdwtrec Multisignal wavelet reconstruction and extraction of

approximation and detail coefficients

Decomposition Structure Utilities

Function Name Purpose
chgwdeccfs Change multisignal 1-D decomposition coefficients
wdecenergy Multisignal 1-D decomposition energy repartition

Compression and Denoising Functions

Function Name Purpose
mswcmp Multisignal 1-D compression using wavelets
mswcmpscr Multisignal 1-D wavelet compression scores
mswcmptp Multisignal 1-D compression thresholds and performance
mswden Multisignal 1-D denoising using wavelets
mswthresh Perform multisignal 1-D thresholding

You can perform analyses from the MATLAB command line or by using the Wavelet
Analyzer app. This section describes each method. The last section discusses how to
exchange signal and coefficient information between the disk and the graphical tools.

1-D Multisignal Analysis — Command Line
1 Load a file, from the MATLAB prompt, by typing
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load thinker

The file thinker.mat contains a single variable X. Use whos to show information
about X.

whos

Name Size Bytes Class
X 192x96 147456 double array

2 Plot some signals.

figure;
plot(X(1:5,:)','r');   hold on 
plot(X(21:25,:)','b'); plot(X(31:35,:)','g')
set(gca,'Xlim',[1,96]) 
grid

3 Perform a wavelet decomposition of signals at level 2 of row signals using the db2
wavelet.

dec = mdwtdec('r',X,2,'db2')

This generates the decomposition structure dec:

dec =
         dirDec: 'r'
          level: 2
          wname: 'db2'
     dwtFilters: [1x1 struct]
        dwtEXTM: 'sym'
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       dwtShift: 0
       dataSize: [192 96]
             ca: [192x26 double]
             cd: {[192x49 double]  [192x26 double]}

4 Change wavelet coefficients.

For each signal change the wavelet coefficients by setting all the coefficients of the
detail of level 1 to zero.

decBIS = chgwdeccfs(dec,'cd',0,1);

This generates a new decomposition structure decBIS.
5 Perform a wavelet reconstruction of signals and plot some of the new signals.

Xbis = mdwtrec(decBIS); 
figure;  
plot(Xbis(1:5,:)','r');   hold on 
plot(Xbis(21:25,:)','b');
plot(Xbis(31:35,:)','g') 
grid; set(gca,'Xlim',[1,96])
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Compare old and new signals by plotting them together.

figure; idxSIG = [1 31]; 
plot(X(idxSIG,:)','r','linewidth',2);   hold on 
plot(Xbis(idxSIG,:)','b','linewidth',2);
grid; set(gca,'Xlim',[1,96])
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6 Set the wavelet coefficients at level 1 and 2 for signals 31 to 35 to the value zero,
perform a wavelet reconstruction of signal 31, and compare some of the old and new
signals.

decTER = chgwdeccfs(dec,'cd',0,1:2,31:35); 
Y = mdwtrec(decTER,'a',0,31);
figure; 
plot(X([1 31],:)','r','linewidth',2);   hold on 
plot([Xbis(1,:)
; Y]','b','linewidth',2); 
grid; set(gca,'Xlim',[1,96])

7 Compute the energy of signals and the percentage of energy for wavelet components.

[E,PEC,PECFS] = wdecenergy(dec);

Energy of signals 1 and 31:
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Ener_1_31 = E([1 31])
Ener_1_31 = 

  1.0e+006 * 
    3.7534 
    2.2411 

8 Compute the percentage of energy for wavelet components of signals 1 and 31.

PEC_1_31 = PEC([1 31],:)  

PEC_1_31 = 
   99.7760    0.1718    0.0522 
   99.3850    0.2926    0.3225

The first column shows the percentage of energy for approximations at level 2.
Columns 2 and 3 show the percentage of energy for details at level 2 and 1,
respectively.

9 Display the percentage of energy for wavelet coefficients of signals 1 and 31. As we
can see in the dec structure, there are 26 coefficients for the approximation and the
detail at level 2, and 49 coefficients for the detail at level 1.

PECFS_1 = PECFS(1,:); PECFS_31 = PECFS(31,:); 
figure; 
plot(PECFS_1,'r','linewidth',2); hold on 
plot(PECFS_31,'b','linewidth',2); 
grid; set(gca,'Xlim',[1,size(PECFS,2)])

10 Compress the signals to obtain a percentage of zeros near 95% for the wavelet
coefficients.
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[XC,decCMP,THRESH] = mswcmp('cmp',dec,'N0_perf',95); 
[Ecmp,PECcmp,PECFScmp] = wdecenergy(decCMP);

Plot the original signals 1 and 31, and the corresponding compressed signals.

figure;
plot(X([1 31],:)','r','linewidth',2);   hold on 
plot(XC([1 31],:)','b','linewidth',2);
grid; set(gca,'Xlim',[1,96])

Compute thresholds, percentage of energy preserved and percentage of zeros
associated with the L2_perf method preserving at least 95% of energy.

[THR_VAL,L2_Perf,N0_Perf] = mswcmptp(dec,'L2_perf',95); 
idxSIG = [1,31];  

Thr   = THR_VAL(idxSIG)
Thr = 
  256.1914 
  158.6085 

L2per = L2_Perf(idxSIG) 
L2per =  
  96.5488
  94.7197

N0per = N0_Perf(idxSIG) 
N0per = 
  79.2079  
  86.1386
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Compress the signals to obtain a percentage of zeros near 60% for the wavelet
coefficients.

[XC,decCMP,THRESH] = mswcmp('cmp',dec,'N0_perf',60);

XC signals are the compressed versions of the original signals in the row direction.

Compress the XC signals in the column direction

XX = mswcmp('cmpsig','c',XC,'db2',2,'N0_perf',60);

Plot original signals X and the compressed signals XX as images.

figure;
subplot(1,2,1); image(X) 
subplot(1,2,2); image(XX) 
colormap(pink(222))

11 Denoise the signals using the universal threshold:
[XD,decDEN,THRESH] = mswden('den',dec,'sqtwolog','sln'); figure; 
plot(X([1 31],:)','r','linewidth',2); hold on 
plot(XD([1 31],:)','b','linewidth',2); 
grid; set(gca,'Xlim',[1,96])
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XD signals are the denoised versions of the original signals in the row direction.

Denoise the XD signals in column direction

XX = mswden('densig','c',XD,'db2',2,'sqtwolog','sln');

Plot original signals X and the denoised signals XX as images.

figure;
subplot(1,2,1); image(X) 
subplot(1,2,2); image(XX) 
colormap(pink(222))
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1-D Multisignal Analysis Using the Wavelet Analyzer App
In this section, we explore the same signal as in the previous section, but use the Wavelet
Analyzer app to analyze it.

1 Start the Wavelet 1-D Multisignal Analysis Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.

Click Multisignal Analysis 1-D to open the Wavelet 1-D Multisignal Analysis tool.
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The tool is divided into five panes. Two of them are the same as in all Wavelet Toolbox
app tools, the Command Frame on the right side of the figure and the Dynamic
Visualization tool at the bottom. The Command Frame contains a special component
found in all multisignal tools: the Selection of Data Sets pane which is used to
manage two lists.

The three new panes are the Visualization of Selected Data pane, the
Information on Selected Data pane, and the Selection of Data pane.

2 Load the signals.

At the MATLAB command prompt, type

load thinker

In the Multisignal Analysis 1-D tool, select File > Import from Workspace >
Import Signals. When the Import from Workspace dialog box appears, select the
X variable. Click OK to import the data matrix and display the first signal.
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The Selection of Data pane contains a list of selectable signals. At the beginning,
only the originally loaded signals are available. You can generate and add new signals
to the list by decomposing, compressing, or denoising original signals.

Each row of the list displays the index of selectable signal (Idx Sel), the index of
original signal (Idx Sig) and three wavelet transform attributes describing the
process used to obtain the selectable signal from the original one.

3 View the signals and signal information.

With signal 1 highlighted, Shift-click the mouse on signal 3 to select signals 1, 2, and
3.

Ctrl-click the mouse on signals 7, 9, and 11. (The Select ALL button at the bottom of
the Selection of Data pane selects all signals and the Clear button deselects all
signals.)

The selected signals (1, 2, 3, 7, 9 and 11) appear in the Visualization of Selected
Data pane. The Information on Selected Data pane contains the box plots of the
minimums, the means, and the maximums of these signals.
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4 Highlight a signal.

Using the Highlight Sel button in the lower-left corner of the Visualization of
Selected Data pane, select signal 3.

5 Select Different Views.

In the Visualization of Selected Data pane, change the view mode using the pop-
up in the lower-right corner. Choose Separate Mode. The selected signals appear.

6 Decompose a multisignal.

Perform an analysis at level 4 using the db2 wavelet and the same file used in the
command line section: thinker.mat.
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In the upper right portion of the Wavelet 1-D Multisignal Analysis tool, select db2 and
level 4 in the Wavelet fields.

Click Decompose. After a pause for computation, all the original signals are
decomposed and signal 1 is automatically selected

In the Selection of Data pane, new information is added for each original signal —
the percentage of energy of the wavelet components (D1,...,D4 and A4) and the total
energy. The Information on Selected Data pane contains information on the single
selected signal: Min, Mean, Max and the energy distribution of the signal.
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Since the original signals are decomposed, new objects appear and the Selection of
Data Sets pane in the Command Frame updates.

The Selection of Data Sets pane defines the available signals that are now
selectable from the Selection of Data pane.

The list on the left allows you to select sets of signals and the right list allows you to
select sets of corresponding coefficients: original signals (Orig. Signals),
approximations (APP 1,...)and details from levels 1 to 4 (DET 1,...).

In the list on the right, the coefficients vectors can be of different lengths, but only
components of the same length can be selected together.

After a decomposition the original signals (Orig. Signals) data set appears
automatically selected.

Select signals 1, 2, 3, 7, 9 and 11.
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The energy of selected signals is primarily concentrated in the approximation A4, so
the box plot is crushed (see following figure on the left). Deselect App. On/Off to see
a better representation of details energy (see following figure on the right).

7 Display multisignal decompositions.

In the Visualization of Selected Data pane, change the view mode using the pop-
up below the plots and select Full Dec Mode. The decompositions of the selected
signals display.
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Change the Level to 2.

Select the signal 7 in Highlight Sel.
8 Change the visualization modes.

Using the second pop-up from the left at the bottom of the pane, select
Full Dec Mode (Cfs). The coefficients of the decompositions of the selected
signals display. At level k, coefficients are duplicated 2k times.

Change the view mode to Stem Mode (Abs), and then change to Tree Mode. The
wavelet tree corresponding to the decompositions of the selected signals displays.

Select the level 4 and click the node a3. Then highlight signal 7.
9 Select Different Wavelet Components.

Ctrl-click Orig. Signals, APP 1, APP 3 and DET 1 to select these four sets of signals
from the list on the left in the Selection of Data Sets pane.

The total number of selected data (Number of Sig.) appears in the Selection of
Data Sets pane: four sets of 192 signals each is a total of 768 signals.
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Click the Asc. button in the Sort pane. The selected data are sorted in ascending
order with respect to the Idx Sig parameter

Note that DWT attributes of each selectable signal have been updated where a stands
for approximation, d for detail and s for signal.

Click the Idx Sel 1 signal and then shift-click the Idx Sel 579 signal.
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Choose Separate Mode.

Ctrl-click to select two sets of signals from the right-most list of the Selection of
Data Sets pane: APP 1 and DET 1.
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Note that in this list of coefficients sets, the selected vectors must be of same length,
which means that you must select components of the same level.

Click the Asc. button in the Sort pane. The selected data are sorted in ascending
order with respect to Idx Sig parameter.

Select the ten first signals.

10 Compress a multisignal.

The Wavelet Analyzer app features a compression option with automatic or manual
thresholding.

Click Compress, located in the lower-right side of the window. This displays the
Compression window.
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Note The tool always compresses all the original signals when you click the
Compress button.

Before compressing, choose the particular strategy for computing the thresholds.
Select the adapted parameters in the Select Compression Method frame. Then,
apply this strategy to compute the thresholds according to the current method, either
to the current selected signals by clicking the Selected button, or to all signals by
clicking the ALL button. For this example, accept the defaults and click the ALL
button.
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The thresholds for each level (ThrD1 to ThrD4), the energy ratio (En. Rat.) and the
sparsity ratio (NbZ Rat.) are displayed in the Selection of Data pane.

Click the Compress button at the bottom of the Thresholding pane. Now you can
select new data sets: compressed Signals, the corresponding approximations, details
and coefficients.

Press the Ctrl key and click the Compressed item in the left list of the Selection of
Data Sets pane. The original signals and their compressed versions are selected (2 x
192 = 384 signals).

Click the Asc. button at the bottom of the Selection of Data pane to sort the signals
using Idx Sig number.

With the mouse, select the first four signals. They correspond to the original signals
1, 2 and the corresponding compressed signals 193, 194.
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Click the Close button to close the Compression window.
11 Denoise a multisignal.

The Wavelet Analyzer app offers a denoising option with either a predefined
thresholding strategy or a manual thresholding method. Using this tool makes very
easy to remove noise from many signals in one step.

Display the Denoising window by clicking the Denoise button located in the bottom
part of the Command Frame on the right of the window.
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A number of options are available for fine-tuning the denoising algorithm. For this
example, accept the defaults: soft type of thresholding, Fixed form threshold
method, and Scaled white noise as noise structure.

Click the ALL button in the Thresholding pane. The threshold for each level
(ThrD1, ..., ThrD4) computes and displays in the Selection of Data pane.

Then click the Denoise button at the bottom of the Thresholding pane.

Ctrl-click the Denoised item in the list on the left of the Selection of Data Sets
pane. The original signals and the corresponding denoised ones are selected (2 x 192
= 384 signals).

Click the Asc. button at the bottom of the Selection of Data pane to sort the signals
according to the Idx Sig parameter.

With the mouse, select the first four signals. They correspond to the original signals
1, 2 and the corresponding denoised signals 193, 194

Choose Separate Mode.
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12 To view residuals, Ctrl-click the Orig. Signal, the Denoised and the Residuals
items in the list on the left of the Selection of Data Sets pane. Original, denoised
and residual signals are selected (3 x 192 = 576 signals).

Click the Asc. button at the bottom of the Selection of Data pane to sort the signals
using the Idx Sig parameter.

With the mouse, select the first six signals. They correspond to the original signals 1,
2, the corresponding denoised signals 193, 194 and the residuals 385, 386.

Then, choose Separate Mode.
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13 Click Close to close the denoising tool. Then, click the Yes button to update the
synthesized signals.

Manual Threshold Tuning

1 Choose a method, select one or several signals in the Selection of Data pane using
the mouse and keys. Then click the Selected button. You can select another group of
signals using the same method. Press the Denoise button to denoise the selected
signal(s).
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You can also use manual threshold tuning. Click the Enable Manual Thresholding
Tuning button.

The horizontal lines in the wavelet coefficient axes (cd1, ..., cd4) can be dragged
using the mouse. This may be done individually, by group or all together depending
on the values in the Select Signal and Selected Level fields in the Manual
Threshold Tuning pane.
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2 In the Wavelet 1-D Multisignal Analysis Compression tool, you can use two methods
for threshold tuning: the By level thresholding method which is used in the Wavelet
1-D Multisignal Analysis Denoising tool, and the Global thresholding method.

You can drag the vertical lines in the Energy and Nb. Zeros Performances axes
using the mouse. This can be done individually or all together depending on the
values of Select Signal in the Manual Threshold Tuning pane.
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The threshold value, L2 performance, and number of zeros performance are updated
in the corresponding edit buttons in the Manual Threshold Tuning pane.

Statistics on Signals

1 You can display various statistical parameters related to the signals and their
components. From the Wavelet 1-D Multisignal Analysis tool, click the Statistics
button. Then select the signal 1 in the Selection of Data Sets pane.
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Select the signals 1, 2, 3, 7, 9 and 11 in the Selection of Data pane, and display the
corresponding boxplots and correlation plots.
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2 To display statistics on many wavelet components, in the Selection Data Sets pane,
in the left column, select Orig.Signals, APP 1, DET 1, Denoised and Residuals
signals. Then choose Separate Mode, and click the Asc. button in the Sort pane.
The selected data are sorted in ascending order with respect to Idx Sig parameter.
In the Selection of Data pane, select data related to signal 1.

Clustering Signals

Note To use clustering, you must have Statistics and Machine Learning Toolbox™
software installed. For more information about clustering, including measuring distances
between objects and determining the proximity of objects to each other, see “Hierarchical
Clustering” (Statistics and Machine Learning Toolbox).

1 Click the Clustering button located in the Command Frame, which is in the lower
right of the Wavelet 1-D Multisignal Analysis window to open the Clustering tool.
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You can cluster various type of signals and wavelet components: original, denoised or
compressed, residuals, and approximations or details (reconstructed or coefficients).
Similarly, there are several methods for constructing partitions of data.

Use the default parameters (Original and Signal in Data to Cluster, and in
Ascending Hierarchical, euclidean, ward, and 6 in Clustering) and click the
Compute Clusters button.
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A full dendrogram and a restricted dendrogram display in the Selection by
Dendrogram pane. For each signal, the cluster number displays in the Selection of
Data pane.

2 Select one cluster, several clusters, or a part of a cluster.

Click the xticklabel 3 at the bottom of the restricted dendrogram. The links of the
third cluster blink in the full dendrogram and the 24 signals of this class display in
the Visualization of Selected Data pane. You can see their numbers in the
Selection of Data pane.

Clicking the line in the restricted or in the full dendrogram lets you select one cluster,
several linked clusters, or a part of a cluster. For a more accurate selection, use the
Dilate X and the Translate X sliders under the full dendrogram. You can also use
the Yscale button located above the full dendrogram. The corresponding signals
display in the Visualization of Selected Data pane and in the list of the Selection
of Data pane.
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You can use the horizontal line in the full dendrogram to change the number of
clusters. Use the left mouse button to drag the line up or down.

3 Use the Show Clusters button to examine the clusters of the current partition. You
can display the mean (or the median) of each cluster, the global standard deviation
and the pointwise standard deviation distance around the mean (or the median). Each
plot title contains: the number of signals in the cluster (Nb) and percent of total, the
global standard deviation (D) of the cluster, and two indices of quality, Q1 and Q2.

The Q1 and Q2 indices can be interpreted as measures of how well a cluster is
concentrated in multidimensional space. The values min and max are the minimum
and maximum values, respectively, of the absolute values of the signal samples in the
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cluster. If the global standard deviation D is small, then Q1 is close to 1 and Q2 is
close to 0. In this case, the cluster is considered well-concentrated. If D is large, then
Q1 is small and Q2 is large. In this case, the cluster is considered more disperse. For
example, in Cluster 3 the minimum and maximum values of the absolute values of the
signal samples are 5 and 220, respectively. Then Q1 = 1 − 37.208/220 = 0.831 and
Q2 = 37.208/(220-5) = 0.173.

4 Click the Store Current Partition button below the Clustering pane to store the
current partition for further comparisons. A default name is suggested. Note that the
1-D Wavelet Multisignal Analysis tool stores the partitions and they are not saved on
the disk.

Partitions

1 Build and store several partitions (for example, partitions with signals, denoised
signals approximations at level 1, 2 and 3, and denoised signals). Then, click the
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Open Partition Manager button below the Store Current Partition button. The
Partitions Management pane appears. The names of all stored partitions are listed.

Now, you can show, clear, or save the partitions (individually, selected ones, or all
together).

2 To display partitions, select the Ori Signals and the Den Signals partitions, and
click the Selected button next to the Show Partitions label.

The clusters are almost the same, but it is difficult to see this on the Selected
Partitions axis, due to the scaling difference. Press the Apply button to renumber
the clusters (starting from the selected partition as basic numbering) to compare the
two partitions.
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Only three signals are not classified in the same cluster for the two considered
partitions.

3 Select the partitions you want to save and click the Save Partitions button below the
Store Current Partition button in the Partitions Management pane.
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Partitions are saved as an array of integers, where each column corresponds to one
partition and contains the indices of clusters. When you choose the Full
Partitions option, an array object (wpartobj) is saved.

4 To load or clear stored partitions use File > Partitions in the Wavelet 1-D
Multisignal Analysis tool. (File > Partitions is also available in the Wavelet 1-D
Multisignal Analysis Clustering tool and you can also save the current partition.)

To clear one or more stored partitions, select File > Partitions > Clear Partition.
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Select File > Partitions > Load Partition to load one or several partitions from the
disk. The loaded partitions are stored in Wavelet 1-D Multisignal Analysis tool with
any previously stored partitions. A partition can also be a manually created column
vector.

Note The number of signals in loaded partitions must be equal to the number of
signals in the Wavelet 1-D Multisignal Analysis tool. A warning appears if this
condition is not true.

5 In each subcomponent of the Wavelet 1-D Multisignal Analysis tool (main, statistics,
denoising, compression, clustering), you can import a stored partition from the list in
the Selection of Data pane. Click the Import Part button at the bottom of the
Selection of Data pane, the Partition Set Manager window appears. Select one
partition and click the Import button.

For this example, go back to the main window, import the Ori Signals partition
and sort the signals in descending order with respect to A4 energy percentage.
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6 You can compare partitions with the Partition tool. To display the Partition tool, click
the More on Partitions button at the bottom of the Partitions Management pane. By
default, when the Partition tool opens, the currently selected partition, in this case
Ori Signals, is compared with itself. In the lower left plot, an integer N at (i,j)
means there is a group of N signals in the ith cluster of P1 and the jth cluster of P2.
Since the Partition tool is comparing a partition with itself, all the numbers are
plotted on the main diagonal.
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Statistics measuring the similarity of the partitions P1 and P2 are displayed in the
panels on the right. The Partitions Pairs Links panel counts pairs of signals. Two
signals x and y are considered a pair if they are in the same cluster. For any two
signals x and y, there are four possibilities.

• The signals are paired in P1 and P2. This is called a true positive.
• The signals are paired in P1 but not in P2. This is called a false positive.
• The signals are not paired in P1 but are in P2. This is called a false negative.
• The signals are not paired in either P1 or P2. This is called a true negative.

The Partitions Pairs Links shows the percentages of each of the four possibilities.
In this example, since there are 192 signals, there are total of 192*191/2 = 18336
possible pairs. Slightly more than 19% of the linked pairs are considered true
positives, and approximately 80% are true negatives. Since the partition is being
compared with itself, no pair is considered a false positive or false negative.

You can also measure how similar two partitions are by assigning a distance (or
index) between them [1]. The distance is based on the number of true and false
positives and negatives. Distance can be defined in different ways. Let R be the
number of true positives, S be the number of true negatives, U be the number of false
positives, and V be the number of false negatives. The Partitions Similarity Indices
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panel shows the distance between the P1 and P2 partitions using different definitions
of distance:

• Rand Index (Rand): (R+S)/(R+S+U+V).
• Asymmetric Rand Index (RandAsym): (2 × (R+S+U)+NS)/NS2 where NS is the

total number of signals.
• Jaccard Index (Jaccard): R/(R+U+V).
• Corrected Rand Index (HubAra): (R-ER)/(MR-ER) where ER is the expected value

of R and MR is the maximum value of the index. If the two partitions are identical,
the index is equal to 1. It is possible for this index to be negative.

• Wallace Index (Wallace): R/sqrt(|pi(P1)| × |pi(P2)|) where |pi(Pi)| is the number
of joined pairs in the partition Pi.

• McNemar Index (MacNemar): If abs(U+V) = 0, then the index is equal to 1.
Otherwise, the index is equal to abs(U-V)/(U+V).

• Lerman Index (ICL): (R-ER)/sqrt(VR) where VR is the variance of R.
• Normalized Lerman Index (ILN):ICL(P1,P2)/sqrt(ICL(P1,P1) × ICL(P2,P2) where

ICL(P,Q) denotes the Lerman index of two partitions P and Q.
7 Select the Den Signals in Sel P2 in the upper-right corner of the window. Then, in

the lower left axis, click the yellow text containing the value 2 (the coordinates of the
corresponding point are (4,5)). The corresponding signals are displayed together with
all related information.
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More on Clustering

Instead of the Ascending Hierarchical Tree clustering method, you can use the K-means
method. For this case, the partition cannot be represented by a dendrogram and other
representations should be used.

In the image representation (see figure below on the left), you can select a cluster by
clicking on the corresponding color on the colorbar. You can also select a cluster or part
of a cluster by clicking on the image.

In the center representation (see figure below on the right) you can select a cluster by
clicking on the corresponding colored center.

Importing and Exporting Information from the Wavelet
Analyzer App
The Wavelet 1-D Multisignal Analysis tool lets you move data to and from disk.

Saving Information to Disk

You can save decompositions and denoised or compressed signals (including the
corresponding decompositions from Wavelet 1-D Multisignal Analysis tools) to disk. You
then can manipulate the data and later import it again into the graphical tools.
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Saving Decompositions

The Wavelet 1-D Multisignal Analysis main tool lets you save the entire set of data from a
wavelet analysis to disk. The toolbox creates a MAT-file in the current folder with a name
you choose.

1 Open the Wavelet 1-D Multisignal Analysis main tool and load the example analysis
by selecting File > Example > Ex 21: Thinker (rows).

2 Save the data from this analysis, using the menu option File > Save
Decompositions.

A dialog box appears that lets you specify a folder and filename for storing the
decomposition data. For this example, use the name decORI.mat.

3 Type the name decORI.
4 After saving the decomposition data to the file decORI.mat, load the variables into

your workspace:

load decORI 
whos
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Name Size Bytes Class
dec 1x1 163306 struct

dec
dec =
         dirDec: 'r'
          level: 4
          wname: 'db2'
     dwtFilters: [1x1 struct]
        dwtEXTM: 'sym'
       dwtShift: 0
       dataSize: [192 96]
             ca: [192x8 double]
             cd: {1x4 cell}

The field ca of the structure dec gives the coefficients of approximation at level 4,
the field cd is a cell array which contains the coefficients of details.

size(dec.cd{1})
ans = 
   192    49 
size(dec.cd{2})
ans = 
   192    26 
size(dec.cd{3})
ans = 
   192    14 
size(dec.cd{4})
ans = 
   192     8

You can change the coefficients using the chgwdeccfs function.

Note For a complete description of the dec structure, see “Loading Decompositions”
on page 3-184.

Loading Information into the Wavelet 1-D Multisignal Analysis Tool

You can load signals or decompositions into the graphical interface. The information you
load may be previously exported from the graphical interface, and then manipulated in
the workspace; or it may be information you initially generated from the command line. In
either case, you must observe the strict file formats and data structures used by the
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Wavelet 1-D Multisignal Analysis tools or errors will occur when you try to load
information.

Loading Signals

To load a signal you constructed in your MATLAB workspace into the Wavelet 1-D
Multisignal Analysis tool, save the signal in a MAT-file (with extension .mat).

For example, if you design a signal called magic128 and want to analyze it in the Wavelet
1-D Multisignal Analysis tool, type

save magic128 magic128

Note The workspace variable magic128 must be a matrix and the number of rows and
columns must be greater than 1.

sizmag = size(magic128)

sizmag =
    128   128

To load this signal into the Wavelet 1-D Multisignal Analysis tool, use the File >
Load Signal menu item. A dialog box appears in which you select the appropriate MAT-
file to be loaded.

Note When you load a matrix of signals from the disk, the name of 2-D variables are
inspected in the following order: x, X, sigDATA, and signals. Then, the 2-D variables
encountered in the file are inspected in alphabetical order.
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Loading Decompositions

To load decompositions that you constructed in the MATLAB workspace into the Wavelet
1-D Multisignal Analysis tool, save the signal in a MAT-file (with extension mat).

For instance, if you design a signal called magic128 and want to analyze it in the Wavelet
1-D Multisignal Analysis too, the structure dec must have the following fields:

'dirDec' Direction indicator with 'r' for row or 'c' for column
'level' Level of DWT decomposition
'wname' Wavelet name
'dwtFilters' Structure with four fields: LoD, HiD, LoR, HiR
'dwtEXTM' DWT extension mode (see dwtmode)
'dwtShift' DWT shift parameter (0 or 1)
'dataSize' Size of original matrix X
'ca' Approximation coefficients at level dec.level
'cd' Cell array of detail coefficients, from 1 to dec.level

The coefficients cA and cD{k}, for (k = 1 to dec.level), are matrices and are stored
row-wise if dec.dirDec is equal to 'r' or column-wise if dec.dirDec is equal to 'c'.

Note The fields 'wname' and 'dwtFilters' have to be compatible (see the wfilters
function). The sizes of cA and cD{k}, (for k = 1 to dec.level) must be compatible with
the direction, the level of the decomposition, and the extension mode.

Loading and Saving Partitions.
Loading

The Wavelet 1-D Multisignal Analysis main tool and clustering tool let you load a set of
partitions from disk.
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Saving Partitions

The Wavelet 1-D Multisignal Analysis clustering tool lets you save a set of partitions to
disk.

For example:

1 Open the Wavelet 1-D Multisignal Analysis main tool and load the example analysis
using File > Example > Ex 21: Thinker (rows).

2 Click the Clustering button. The Wavelet 1-D Multisignal Analysis Clustering window
appears.

3 Click the Compute Clusters button, and then save the current partition using menu
option File > Partitions > Save Current Partition. A dialog box appears that lets
you specify the type of data to save.
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4 Click the Save Curr. button.

5 Another dialog box appears that lets you specify a folder and filename for storing the
partition data. Type the name curPART.

6 After saving the partition data to the file curPART.mat, load the variables into your
workspace:

load curPART
whos

Name Size Bytes Class
tab_IdxCLU 192x1 1536 double

7 You can modify the array tab_IdxCLU in the workspace, and save the partition data
in a file. For example to create two new partitions with four and two clusters, type
the following lines:

tab_IdxCLU(:,2) = rem((1:192)',4) + 1; 
tab_IdxCLU(:,3) = double((1:192)'>96) + 1; 
save newpart tab_IdxCLU

Now you can use three partitions for the example Ex 21: Thinker (rows). Then, you
can load the partitions stored in the file newPART.mat in the Wavelet 1-D Multisignal
Analysis main tool and clustering tool.

Note A partition is a column vector of integers. The values must vary from 1 to
NbClusters (NbClusters > 1), and each cluster must contain at least one
element. The number of rows must be equal to the number of signals.

3 Discrete Wavelet Analysis

3-186



References
[1] Denoeud, L., Garreta, H., and A. Guénoche. "Comparison of Distance Indices Between

Partitions." In International Symposium on Applied Stochastic Models and Data
Analysis, 432–440. Brest, France: École Nationale des Télécommunications de
Bretagne, 2005.

 1-D Multisignal Analysis

3-187



2-D Discrete Wavelet Analysis
This section takes you through the features of 2-D discrete wavelet analysis using the
Wavelet Toolbox software. The toolbox provides these functions for image analysis. For
more information, see the function reference pages.

Note In this section the presentation and examples use 2-D arrays corresponding to
indexed image representations. However, the functions described are also available when
using truecolor images, which are represented by m-by-n-by-3 arrays of uint8. For more
information on image formats, see “Wavelets: Working with Images”.

Analysis-Decomposition Functions
Function Name Purpose
dwt2 Single-level decomposition
wavedec2 Decomposition
wmaxlev Maximum wavelet decomposition level

Synthesis-Reconstruction Functions
Function Name Purpose
idwt2 Single-level reconstruction
waverec2 Full reconstruction
wrcoef2 Selective reconstruction
upcoef2 Single reconstruction

Decomposition Structure Utilities
Function Name Purpose
detcoef2 Extraction of detail coefficients
appcoef2 Extraction of approximation coefficients
upwlev2 Recomposition of decomposition structure
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Denoising and Compression
Function Name Purpose
ddencmp Provide default values for denoising and compression
wbmpen Penalized threshold for wavelet 1-D or 2-D denoising
wdcbm2 Thresholds for wavelet 2-D using Birgé-Massart

strategy
wdencmp Wavelet denoising and compression
wthrmngr Threshold settings manager

In this section, you'll learn

• How to load an image
• How to analyze an image
• How to perform single-level and multilevel image decompositions and reconstructions

(command line only)
• How to use Square and Tree mode features (GUI only)
• How to zoom in on detail (GUI only)
• How to compress an image

2-D Analysis — Command Line
In this example we'll show how you can use 2-D wavelet analysis to compress an image
efficiently without sacrificing its clarity.

Note Instead of directly using image(I) to visualize the image I, we use
image(wcodemat(I)), which displays a rescaled version of I leading to a clearer
presentation of the details and approximations (see wcodemat reference page).

1 Load an image.

From the MATLAB prompt, type

load wbarb;  
whos
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Name Size Bytes Class
X 256x256 524288 double array
map 192x3 4608 double array

2 Display the image. Type

image(X); colormap(map); colorbar;

3 Convert an indexed image to a grayscale image.

If the colormap is smooth, the wavelet transform can be directly applied to the
indexed image; otherwise the indexed image should be converted to grayscale
format. For more information, see “Wavelets: Working with Images”.

Since the colormap is smooth in this image, you can now perform the decomposition.
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4 Perform a single-level wavelet decomposition.

To perform a single-level decomposition of the image using the bior3.7 wavelet,
type

[cA1,cH1,cV1,cD1] = dwt2(X,'bior3.7');

This generates the coefficient matrices of the level-one approximation (cA1) and
horizontal, vertical and diagonal details (cH1,cV1,cD1, respectively).

5 Construct and display approximations and details from the coefficients.

To construct the level-one approximation and details (A1, H1, V1, and D1) from the
coefficients cA1, cH1, cV1, and cD1, type

A1 = upcoef2('a',cA1,'bior3.7',1);
H1 = upcoef2('h',cH1,'bior3.7',1); 
V1 = upcoef2('v',cV1,'bior3.7',1);
D1 = upcoef2('d',cD1,'bior3.7',1);

or

sx = size(X);
A1 = idwt2(cA1,[],[],[],'bior3.7',sx);  
H1 = idwt2([],cH1,[],[],'bior3.7',sx);
V1 = idwt2([],[],cV1,[],'bior3.7',sx);  
D1 = idwt2([],[],[],cD1,'bior3.7',sx);

To display the results of the level 1 decomposition, type

colormap(map);
subplot(2,2,1); image(wcodemat(A1,192));
title('Approximation A1')
subplot(2,2,2); image(wcodemat(H1,192));
title('Horizontal Detail H1')
subplot(2,2,3); image(wcodemat(V1,192));
title('Vertical Detail V1') 
subplot(2,2,4); image(wcodemat(D1,192));
title('Diagonal Detail D1')
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6 Regenerate an image by single-level Inverse Wavelet Transform.

To find the inverse transform, type

Xsyn = idwt2(cA1,cH1,cV1,cD1,'bior3.7');

This reconstructs or synthesizes the original image from the coefficients of the level 1
approximation and details.

7 Perform a multilevel wavelet decomposition.

To perform a level 2 decomposition of the image (again using the bior3.7 wavelet),
type

[C,S] = wavedec2(X,2,'bior3.7');

where X is the original image matrix, and 2 is the level of decomposition.

The coefficients of all the components of a second-level decomposition (that is, the
second-level approximation and the first two levels of detail) are returned
concatenated into one vector, C. Argument S is a bookkeeping matrix that keeps track
of the sizes of each component.
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8 Extract approximation and detail coefficients.

To extract the level 2 approximation coefficients from C, type

cA2 = appcoef2(C,S,'bior3.7',2);

To extract the first- and second-level detail coefficients from C, type

cH2 = detcoef2('h',C,S,2);
cV2 = detcoef2('v',C,S,2);
cD2 = detcoef2('d',C,S,2);
cH1 = detcoef2('h',C,S,1);
cV1 = detcoef2('v',C,S,1);
cD1 = detcoef2('d',C,S,1);

or

[cH2,cV2,cD2] = detcoef2('all',C,S,2);
[cH1,cV1,cD1] = detcoef2('all',C,S,1);

where the first argument ('h', 'v', or 'd') determines the type of detail (horizontal,
vertical, diagonal) extracted, and the last argument determines the level.

9 Reconstruct the Level 2 approximation and the Level 1 and 2 details.

To reconstruct the level 2 approximation from C, type

A2 = wrcoef2('a',C,S,'bior3.7',2);

To reconstruct the level 1 and 2 details from C, type

H1 = wrcoef2('h',C,S,'bior3.7',1);
V1 = wrcoef2('v',C,S,'bior3.7',1);
D1 = wrcoef2('d',C,S,'bior3.7',1);
H2 = wrcoef2('h',C,S,'bior3.7',2);
V2 = wrcoef2('v',C,S,'bior3.7',2);
D2 = wrcoef2('d',C,S,'bior3.7',2);

10 Display the results of a multilevel decomposition.

Note With all the details involved in a multilevel image decomposition, it makes
sense to import the decomposition into the Wavelet 2-D graphical tool in order to
more easily display it. For information on how to do this, see “Loading
Decompositions” on page 3-212.
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To display the results of the level 2 decomposition, type

colormap(map);
subplot(2,4,1);image(wcodemat(A1,192));
title('Approximation A1')
subplot(2,4,2);image(wcodemat(H1,192));
title('Horizontal Detail H1')
subplot(2,4,3);image(wcodemat(V1,192));
title('Vertical Detail V1')
subplot(2,4,4);image(wcodemat(D1,192));
title('Diagonal Detail D1')
subplot(2,4,5);image(wcodemat(A2,192));
title('Approximation A2')
subplot(2,4,6);image(wcodemat(H2,192));
title('Horizontal Detail H2')
subplot(2,4,7);image(wcodemat(V2,192));
title('Vertical Detail V2')
subplot(2,4,8);image(wcodemat(D2,192));
title('Diagonal Detail D2')

11 Reconstruct the original image from the multilevel decomposition.

To reconstruct the original image from the wavelet decomposition structure, type

X0 = waverec2(C,S,'bior3.7');

This reconstructs or synthesizes the original image from the coefficients C of the
multilevel decomposition.

12 Compress the image and display it.

To compress the original image X, use the ddencmp command to calculate the default
parameters and the wdencmp command to perform the actual compression. Type

[thr,sorh,keepapp]= ddencmp('cmp','wv',X); 
[Xcomp,CXC,LXC,PERF0,PERFL2] = ... 
wdencmp('gbl',C,S,'bior3.7',2,thr,sorh,keepapp);

Note that we pass in to wdencmp the results of the decomposition (C and S) we
calculated in step 7. We also specify the bior3.7 wavelets, because we used this
wavelet to perform the original analysis. Finally, we specify the global thresholding
option 'gbl'. See ddencmp and wdencmp reference pages for more information
about the use of these commands.

To view the compressed image side by side with the original, type
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colormap(map);
subplot(121); image(X); title('Original Image'); 
axis square
subplot(122); image(Xcomp); title('Compressed Image'); 
axis square

PERF0
   PERF0 =
       49.8076  

PERFL2
   PERFL2 =
       99.9817

These returned values tell, respectively, what percentage of the wavelet coefficients
was set to zero and what percentage of the image's energy was preserved in the
compression process.

Note that, even though the compressed image is constructed from only about half as
many nonzero wavelet coefficients as the original, there is almost no detectable
deterioration in the image quality.

2-D Wavelet Analysis Using the Wavelet Analyzer App
In this section we explore the same image as in the previous section, but we use the
Wavelet Analyzer app to analyze the image.

1 Start the 2-D Wavelet Analysis Tool.

From the MATLAB prompt, type waveletAnalyzer.
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The Wavelet Tool Main Menu appears.

Click the Wavelet 2-D menu item. The discrete wavelet analysis tool for 2-D image
data appears.
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2 Load an image.

At the MATLAB command prompt, type

load wbarb

In the Wavelet 2-D tool, select File > Import from Workspace > Import Image.
When the Import from Workspace dialog box appears, select the X variable. Click
OK to import the image.

The image is loaded into the Wavelet 2-D tool.
3 Analyze the image.
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Using the Wavelet and Level menus located to the upper right, determine the
wavelet family, the wavelet type, and the number of levels to be used for the analysis.

For this analysis, select the bior3.7 wavelet at level 2.

Click the Analyze button. After a pause for computation, the Wavelet 2-D tool
displays its analysis.
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Using Square Mode Features

By default, the analysis appears in “Square Mode.” This mode includes four different
displays. In the upper left is the original image. Below that is the image
reconstructed from the various approximations and details. To the lower right is a
decomposition showing the coarsest approximation coefficients and all the horizontal,
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diagonal, and vertical detail coefficients. Finally, the visualization space at the top
right displays any component of the analysis that you want to look at more closely.

Click on any decomposition component in the lower right window.

A blue border highlights the selected component. At the lower right of the Wavelet
2-D window, there is a set of three buttons labeled “Operations on selected image.”
Note that if you click again on the same component, you'll deselect it and the blue
border disappears.

Click the Visualize button.

The selected image is displayed in the visualization area. You are seeing the raw,
unreconstructed 2-D wavelet coefficients. Using the other buttons, you can display
the reconstructed version of the selected image component, or you can view the
selected component at full screen resolution.

Using Tree Mode Features

Choose Tree from the View Mode menu.

Your display changes to reveal the following.
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This is the same information shown in square mode, with in addition all the
approximation coefficients, but arranged to emphasize the tree structure of the
decomposition. The various buttons and menus work just the same as they do in
square mode.

Zooming in on Detail
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Drag a rubber band box (by holding down the left mouse button) over the portion of
the image you want to magnify.

Click the XY+ button (located at the bottom of the screen) to zoom horizontally and
vertically.

The Wavelet 2-D tool enlarges the displayed images.

To zoom back to original magnification, click the History <<- button.
4 Compress the image

Click the Compress button, located to the upper right of the Wavelet 2-D window.
The Wavelet 2-D Compression window appears.
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The tool automatically selects thresholding levels to provide a good initial balance
between retaining the image's energy while minimizing the number of coefficients
needed to represent the image.

However, you can also adjust thresholds manually using the By Level thresholding
option, and then the sliders or edits corresponding to each level.
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For this example, select the By Level thresholding option and select the Remove
near 0 method from the Select thresholding method menu.

The following window is displayed.

Select from the direction menu whether you want to adjust thresholds for horizontal,
diagonal or vertical details. To make the actual adjustments for each level, use the
sliders or use the left mouse button to directly drag the dashed lines.

To compress the original image, click the Compress button. After a pause for
computation, the compressed image is displayed beside the original. Notice that
compression eliminates almost half the coefficients, yet no detectable deterioration of
the image appears.
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5 Show the residuals.

From the Wavelet 2-D Compression tool, click the Residuals button. The More on
Residuals for Wavelet 2-D Compression window appears.

Displayed statistics include measures of tendency (mean, mode, median) and
dispersion (range, standard deviation). In addition, the tool provides frequency-
distribution diagrams (histograms and cumulative histograms). The same tool exists
for the Wavelet 2-D Denoising tool.

Note The statistics displayed in the above figure are related to the displayed image
but not to the original one. Usually this information is the same, but in some cases,
edge effects may cause the original image to be cropped slightly. To see the exact
statistics, use the command line functions to get the desired image and then apply
the desired MATLAB statistical function(s).

Importing and Exporting Information from the Wavelet
Analyzer App
The Wavelet 2-D graphical tool lets you import information from and export information
to disk, if you adhere to the proper file formats.
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Saving Information to Disk

You can save synthesized images, coefficients, and decompositions from the Wavelet 2-D
tool to disk, where the information can be manipulated and later reimported into the
graphical tool.

Saving Synthesized Images

You can process an image in the Wavelet 2-D tool, and then save the processed image to
a MAT-file (with extension mat or other).

For example, load the example analysis:

File > Example Analysis > Indexed Images > at level 3, with sym4 → Detail Durer

and perform a compression on the original image. When you close the Wavelet 2-D
Compression window, update the synthesized image by clicking Yes in the dialog box
that appears.

Then, from the Wavelet 2-D tool, select the File > Save > Synthesized Image menu
option. A dialog box appears allowing you to select a folder and filename for the MAT-file
(with extension mat or other). For this example, choose the name symage.

To load the image into your workspace, type

load symage 
whos
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Name Size Bytes Class
X 359x371 1065512 double array
map 64x3 1536 double array
valTHR 1x1 8 double array
wname 1x4 8 char array

The synthesized image is given by X and map contains the colormap. In addition, the
parameters of the denoising or compression process are given by the wavelet name
(wname) and the global threshold (valTHR).

Saving Discrete Wavelet Transform Coefficients

The Wavelet 2-D tool lets you save the coefficients of a discrete wavelet transform (DWT)
to disk. The toolbox creates a MAT-file in the current folder with a name you choose.

To save the DWT coefficients from the present analysis, use the menu option File > Save
> Coefficients.

A dialog box appears that lets you specify a folder and filename for storing the
coefficients.

Consider the example analysis:

File > Example Analysis > Indexed Images > at level 3, with sym4 → Detail Durer

After saving the discrete wavelet coefficients to the file cfsdurer.mat, load the
variables into your workspace:

load cfsdurer
whos

Name Size Bytes Class
coefs 1x142299 1138392 double array
map 64x3 1536 double array
sizes 5x2 80 double array
valTHR 0x0 0 double array
wname 1x4 8 char array

 2-D Discrete Wavelet Analysis

3-207



Variable map contains the colormap. Variable wname contains the wavelet name and
valTHR is empty since the synthesized image is the same as the original one.

Variables coefs and sizes contain the discrete wavelet coefficients and the associated
matrix sizes. More precisely, in the above example, coefs is a 1-by-142299 vector of
concatenated coefficients, and sizes gives the length of each component.

Saving Decompositions

The Wavelet 2-D tool lets you save the entire set of data from a discrete wavelet analysis
to disk. The toolbox creates a MAT-file in the current folder with a name you choose,
followed by the extension wa2 (wavelet analysis 2-D).

Open the Wavelet 2-D tool and load the example analysis:

File > Example Analysis > Indexed Images > at level 3, with sym4 → Detail Durer.

To save the data from this analysis, use the menu option File > Save > Decomposition.

A dialog box appears that lets you specify a folder and filename for storing the
decomposition data. Type the name decdurer.

After saving the decomposition data to the file decdurer.wa2, load the variables into
your workspace:

load decdurer.wa2 -mat 
whos 

Name Size Bytes Class
coefs 1x142299 1138392 double array
data_name 1x6 12 char array
map 64x3 1536 double array
sizes 5x2 80 double array
valTHR 0x0 0 double array
wave_name 1x4 8 char array

Variables coefs and sizes contain the wavelet decomposition structure. Other variables
contain the wavelet name, the colormap, and the filename containing the data. Variable
valTHR is empty since the synthesized image is the same as the original one.
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Note Save options are also available when performing denoising or compression inside
the Wavelet 2-D tool. In the Wavelet 2-D Denoising window, you can save denoised
image and decomposition. The same holds true for the Wavelet 2-D Compression
window. This way, you can save many different trials from inside the Denoising and
Compression windows without going back to the main Wavelet 2-D window during a fine-
tuning process. When saving a synthesized signal, a decomposition or coefficients to a
MAT-file, the mat file extension is not necessary. You can save approximations individually
for each level or save them all at once.

Loading Information into the Wavelet 2-D Tool

You can load images, coefficients, or decompositions into the Wavelet Analyzer app. The
information you load may have been previously exported from the Wavelet Analyzer app,
and then manipulated in the workspace; or it may have been information you generated
initially from the command line.

In either case, you must observe the strict file formats and data structures used by the
Wavelet 2-D tool, or else errors will result when you try to load information.

Loading Images

This toolbox supports only indexed images. An indexed image is a matrix containing only
integers from 1 to n, where n is the number of colors in the image.

 2-D Discrete Wavelet Analysis

3-209



This image may optionally be accompanied by an n-by-3 matrix called map. This is the
colormap associated with the image. When MATLAB displays such an image, it uses the
values of the matrix to look up the desired color in this colormap. If the colormap is not
given, the Wavelet 2-D tool uses a monotonic colormap with
max(max(X))min(min(X))+1 colors.

To load an image you've constructed in your MATLAB workspace into the Wavelet 2-D
tool, save the image (and optionally, the variable map) in a MAT-file (with extension mat or
other).

For instance, suppose you've created an image called brain and want to analyze it in the
Wavelet 2-D tool. Type

X = brain; 
map = pink(256); 
save myfile X map

To load this image into the Wavelet 2-D tool, use the menu option File > Load > Image.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Note The graphical tools allow you to load an image that does not contain integers from
1 to n. The computations are correct because they act directly on the matrix, but the
display of the image is strange. The values less than 1 are evaluated as 1, the values
greater than n are evaluated as n, and a real value within the interval [1,n] is evaluated as
the closest integer.

The coefficients, approximations, and details produced by wavelet decomposition are not
indexed image matrices.

To display these images in a suitable way, the Wavelet 2-D tool follows these rules:

• Reconstructed approximations are displayed using the colormap map.
• The coefficients and the reconstructed details are displayed using the colormap map

applied to a rescaled version of the matrices.

Note The first 2-D variable encountered in the file (except the variable map, which is
reserved for the colormap) is considered the image. Variables are inspected in
alphabetical order.
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Loading Discrete Wavelet Transform Coefficients

To load discrete wavelet transform (DWT) coefficients into the Wavelet 2-D tool, first
save the appropriate data in a MAT-file, which must contain at least the two variables:

• coefs, the coefficients vector
• sizes, the bookkeeping matrix

For an indexed image the matrix sizes is an n+2-by-2 array:

For a truecolor image, the matrix sizes is a n+2-by-3:
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Variable coefs must be a vector of concatenated DWT coefficients. The coefs vector for
an n-level decomposition contains 3n+1 sections, consisting of the level-n approximation
coefficients, followed by the horizontal, vertical, and diagonal detail coefficients, in that
order, for each level. Variable sizes is a matrix, the rows of which specify the size of cAn,
the size of cHn (or cVn, or cDn),..., the size of cH1 (or cV1, or cD1), and the size of the
original image X. The sizes of vertical and diagonal details are the same as the horizontal
detail.

After constructing or editing the appropriate data in your workspace, type

save myfile coefs sizes

Use the File > Load > Coefficients menu option from the Wavelet 2-D tool to load the
data into the graphical tool.

A dialog box appears, allowing you to choose the folder and file in which your data reside.

Loading Decompositions

To load discrete wavelet transform decomposition data into the Wavelet 2-D tool, you
must first save the appropriate data in a MAT-file (with extension wa2 or other).

The MAT-file contains these variables.

Variable Status Description
coefs Required Vector of concatenated DWT coefficients
sizes Required Matrix specifying sizes of components of coefs

and of the original image
wave_name Required Character vector specifying name of wavelet

used for decomposition (e.g., db3)
map Optional n-by-3 colormap matrix.
data_name Optional Character vector specifying name of

decomposition

After constructing or editing the appropriate data in your workspace, type

save myfile.wa2 coefs sizes wave_name

Use the File > Load > Decomposition menu option from the Wavelet 2-D tool to load
the image decomposition data.
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A dialog box appears, allowing you to choose the folder and file in which your data reside.

Note When loading an image, a decomposition, or coefficients from a MAT-file, the
extension of this file is free. The mat extension is not necessary.
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2-D Stationary Wavelet Transform
This section takes you through the features of 2-D discrete stationary wavelet analysis
using the Wavelet Toolbox software.

Analysis-Decomposition Function
Function Name Purpose
swt2 Decomposition

Synthesis-Reconstruction Function
Function Name Purpose
iswt2 Reconstruction

The stationary wavelet decomposition structure is more tractable than the wavelet one.
So, the utilities useful for the wavelet case are not necessary for the Stationary Wavelet
Transform (SWT).

In this section, you'll learn to

• Load an image
• Analyze an image
• Perform single-level and multilevel image decompositions and reconstructions

(command line only)
• denoise an image

2-D Analysis Using the Command Line
In this example, we'll show how you can use 2-D stationary wavelet analysis to denoise an
image.

Note Instead of using image(I) to visualize the image I, we use
image(wcodemat(I)), which displays a rescaled version of I leading to a clearer
presentation of the details and approximations (see the wcodemat reference page).
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This example involves a image containing noise.

1 Load an image.

From the MATLAB prompt, type

load noiswom 
whos

Name Size Bytes Class
X 96x96 73728 double array
map 255x3 6120 double array

For the SWT, if a decomposition at level k is needed, 2^k must divide evenly into
size(X,1) and size(X,2). If your original image is not of correct size, you can use
the Image Extension Wavelet Analyzer app tool or the function wextend to extend
it.

2 Perform a single-level Stationary Wavelet Decomposition.

Perform a single-level decomposition of the image using the db1 wavelet. Type

[swa,swh,swv,swd] = swt2(X,1,'db1');

This generates the coefficients matrices of the level-one approximation (swa) and
horizontal, vertical and diagonal details (swh, swv, and swd, respectively). Both are
of size-the-image size. Type

whos

Name Size Bytes Class
X 96x96 73728 double array
map 255x3 6120 double array
swa 96x96 73728 double array
swh 96x96 73728 double array
swv 96x96 73728 double array
swd 96x96 73728 double array
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3 Display the coefficients of approximation and details.

To display the coefficients of approximation and details at level 1, type

map = pink(size(map,1)); colormap(map) 
subplot(2,2,1), image(wcodemat(swa,192));
title('Approximation swa') 
subplot(2,2,2), image(wcodemat(swh,192));
title('Horiz. Detail swh') 
subplot(2,2,3), image(wcodemat(swv,192));
title('Vertical Detail swv') 
subplot(2,2,4), image(wcodemat(swd,192));
title('Diag. Detail swd');

4 Regenerate the image by Inverse Stationary Wavelet Transform.

3 Discrete Wavelet Analysis

3-216



To find the inverse transform, type

A0 = iswt2(swa,swh,swv,swd,'db1');

To check the perfect reconstruction, type

err = max(max(abs(X-A0)))

err =
     1.1369e-13

5 Construct and display approximation and details from the coefficients.

To construct the level 1 approximation and details (A1, H1, V1 and D1) from the
coefficients swa, swh, swv and swd, type

nulcfs = zeros(size(swa));
A1 = iswt2(swa,nulcfs,nulcfs,nulcfs,'db1');  
H1 = iswt2(nulcfs,swh,nulcfs,nulcfs,'db1');
V1 = iswt2(nulcfs,nulcfs,swv,nulcfs,'db1'); 
D1 = iswt2(nulcfs,nulcfs,nulcfs,swd,'db1');

To display the approximation and details at level 1, type

colormap(map)
subplot(2,2,1), image(wcodemat(A1,192)); 
title('Approximation A1')
subplot(2,2,2), image(wcodemat(H1,192)); 
title('Horiz. Detail H1')
subplot(2,2,3), image(wcodemat(V1,192)); 
title('Vertical Detail V1')
subplot(2,2,4), image(wcodemat(D1,192)); 
title('Diag. Detail D1')
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6 Perform a multilevel Stationary Wavelet Decomposition.

To perform a decomposition at level 3 of the image (again using the db1 wavelet),
type

[swa,swh,swv,swd] = swt2(X,3,'db1');

This generates the coefficients of the approximations at levels 1, 2, and 3 (swa) and
the coefficients of the details (swh, swv and swd). Observe that the matrices
swa(:,:,i), swh(:,:,i), swv(:,:,i), and swd(:,:,i) for a given level i are of
size-the-image size. Type

clear A0 A1 D1 H1 V1 err nulcfs 
whos 
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Name Size Bytes Class
X 96x96 73728 double array
map 255x3 6120 double array
swa 96x96x3 221184 double array
swh 96x96x3 221184 double array
swv 96x96x3 221184 double array
swd 96x96x3 221184 double array

7 Display the coefficients of approximations and details.

To display the coefficients of approximations and details, type

colormap(map)
kp = 0; 
for i = 1:3
    subplot(3,4,kp+1), image(wcodemat(swa(:,:,i),192));
    title(['Approx. cfs level ',num2str(i)])
    subplot(3,4,kp+2), image(wcodemat(swh(:,:,i),192));
    title(['Horiz. Det. cfs level ',num2str(i)]) 
    subplot(3,4,kp+3), image(wcodemat(swv(:,:,i),192));
    title(['Vert. Det. cfs level ',num2str(i)]) 
    subplot(3,4,kp+4), image(wcodemat(swd(:,:,i),192)); 
    title(['Diag. Det. cfs level ',num2str(i)])
    kp = kp + 4; 
end

8 Reconstruct approximation at Level 3 and details from coefficients.

To reconstruct the approximation at level 3, type

mzero = zeros(size(swd)); 
A = mzero; 
A(:,:,3) = iswt2(swa,mzero,mzero,mzero,'db1');

To reconstruct the details at levels 1, 2 and 3, type

H = mzero; V = mzero; 
D = mzero; 
for i = 1:3
    swcfs = mzero; swcfs(:,:,i) = swh(:,:,i); 
    H(:,:,i) = iswt2(mzero,swcfs,mzero,mzero,'db1');
    swcfs = mzero; swcfs(:,:,i) = swv(:,:,i); 
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    V(:,:,i) = iswt2(mzero,mzero,swcfs,mzero,'db1');
    swcfs = mzero; swcfs(:,:,i) = swd(:,:,i); 
    D(:,:,i) = iswt2(mzero,mzero,mzero,swcfs,'db1');
end

9 Reconstruct and display approximations at Levels 1, 2 from approximation at Level 3
and details at Levels 1, 2, and 3.

To reconstruct the approximations at levels 2 and 3, type

A(:,:,2) = A(:,:,3) + H(:,:,3) + V(:,:,3) + D(:,:,3); 
A(:,:,1) = A(:,:,2) + H(:,:,2) + V(:,:,2) + D(:,:,2);

To display the approximations and details at levels 1, 2, and 3, type

colormap(map)
kp = 0; 
for i = 1:3 
    subplot(3,4,kp+1), image(wcodemat(A(:,:,i),192));
    title(['Approx. level ',num2str(i)]) 
    subplot(3,4,kp+2), image(wcodemat(H(:,:,i),192));
    title(['Horiz. Det. level ',num2str(i)]) 
    subplot(3,4,kp+3), image(wcodemat(V(:,:,i),192)); 
    title(['Vert. Det. level ',num2str(i)])
    subplot(3,4,kp+4), image(wcodemat(D(:,:,i),192)); 
    title(['Diag. Det. level ',num2str(i)]) 
    kp = kp + 4; 
end

10 Remove noise by thresholding.

To denoise an image, use the threshold value we find using the Wavelet Analyzer
app tool (see the next section), use the wthresh command to perform the actual
thresholding of the detail coefficients, and then use the iswt2 command to obtain
the denoised image.

thr = 44.5; 
sorh = 's'; dswh = wthresh(swh,sorh,thr); 
dswv = wthresh(swv,sorh,thr);
dswd = wthresh(swd,sorh,thr); 
clean = iswt2(swa,dswh,dswv,dswd,'db1');

To display both the original and denoised images, type

colormap(map)
subplot(1,2,1), image(wcodemat(X,192)); 
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title('Original image') 
subplot(1,2,2), image(wcodemat(clean,192)); 
title('denoised image')

A second syntax can be used for the swt2 and iswt2 functions, giving the same
results:

lev= 4; 
swc = swt2(X,lev,'db1'); 
swcden = swc; 
swcden(:,:,1:end-1) =
wthresh(swcden(:,:,1:end-1),sorh,thr); 
clean = iswt2(swcden,'db1');

You obtain the same plot by using the plot commands in step 9 above.
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Interactive 2-D Stationary Wavelet Transform Denoising
In this section, we explore a strategy for denoising images based on the 2-D stationary
wavelet analysis using the Wavelet Analyzer app. The basic idea is to average many
slightly different discrete wavelet analyses.

1 Start the Stationary Wavelet Transform Denoising 2-D Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears:

Click the SWT Denoising 2-D menu item.
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2 Load data.

At the MATLAB command prompt, type

load noiswom

In the SWT Denoising 2-D tool, select File > Import Image from Workspace.
When the Import from Workspace dialog box appears, select the X variable. Click
OK to import the image.

3 Perform a Stationary Wavelet Decomposition.

Select the haar wavelet from the Wavelet menu, select 4 from the Level menu, and
then click the Decompose Image button.

The tool displays the histograms of the stationary wavelet detail coefficients of the
image on the left of the window. These histograms are organized as follows:

• From the bottom for level 1 to the top for level 4
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• On the left horizontal coefficients, in the middle diagonal coefficients, and on the
right vertical coefficients

4 Denoise the image using the Stationary Wavelet Transform.

While a number of options are available for fine-tuning the denoising algorithm, we'll
accept the defaults of fixed form soft thresholding and unscaled white noise. The
sliders located to the right of the window control the level dependent thresholds
indicated by the dashed lines running vertically through the histograms of the
coefficients on the left of the window. Click the Denoise button.

The result seems to be oversmoothed and the selected thresholds too aggressive.
Nevertheless, the histogram of the residuals is quite good since it is close to a
Gaussian distribution, which is the noise introduced to produce the analyzed image
noiswom.mat from a piece of the original image woman.mat.

5 Selecting a thresholding method.
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From the Select thresholding method menu, choose the Penalize low item. The
associated default for the thresholding mode is automatically set to hard; accept it.
Use the Sparsity slider to adjust the threshold value close to 45.5, and then click the
denoise button.

The result is quite satisfactory, although it is possible to improve it slightly.

Select the sym6 wavelet and click the Decompose Image button. Use the Sparsity
slider to adjust the threshold value close to 40.44, and then click the denoise button.

Importing and Exporting Information from the Wavelet
Analyzer App
The tool lets you save the denoised image to disk. The toolbox creates a MAT-file in the
current folder with a name you choose.

To save the denoised image from the present denoising process, use the menu File >
Save denoised Image. A dialog box appears that lets you specify a folder and filename
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for storing the image. Type the name dnoiswom. After saving the image data to the file
dnoiswom.mat, load the variables into your workspace:

load dnoiswom 
whos

Name Size Bytes Class
X 96x96 73728 double array
map 255x3 6120 double array
valTHR 3x4 96 double array
wname 1x4 8 char array

The denoised image is X and map is the colormap. In addition, the parameters of the
denoising process are available. The wavelet name is contained in wname, and the level
dependent thresholds are encoded in valTHR. The variable valTHR has four columns (the
level of the decomposition) and three rows (one for each detail orientation).
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Shearlet Systems
A shearlet system enables you to create directionally sensitive sparse representations of
images with anisotropic features. Shearlets are used in image processing applications
including denoising, compression, restoration, and feature extraction. Shearlets are also
used in statistical learning to address problems of image classification, inverse scattering
problems such as tomography, and data separation. You can find additional applications at
ShearLab [5].

A strength of wavelet analysis for 1-D signals is its ability to efficiently represent smooth
functions that have pointwise discontinuities. However, wavelets do not represent curved
singularities, such as the edge of a disk in an image, as sparsely as they do pointwise
discontinuities. Geometric multiscale analysis is an attempt to design systems capable of
efficiently representing curved singularities in higher dimensional data. In addition to
shearlets, other geometric multiscale systems include curvelets, contourlets, and
bandlets.

Guo, Kutyniok, and Labate [1] pioneered the development of the theory of shearlets. They.
also developed efficient algorithms for shearlet transforms [4], as have Häuser and Steidl
[6]. ShearLab [5] provides an extensive set of algorithms for processing two- and three-
dimensional data using shearlets.

Like wavelets, a comprehensive theory relates the continuous shearlet transform with the
discrete transform. Also, a multiresolution analysis framework exists for shearlets. As the
name suggests, shearlets have the noteworthy feature of using shears, not rotations, to
control directional sensitivity. This characteristic allows you to create a shearlet system
from a single or finite set of generating functions. Other reasons for the success of
shearlets include:

• Shearlets provide optimally sparse approximations of anisotropic features of
multivariate data.

• Both compactly supported and bandlimited shearlets exist.
• Shearlet transforms have efficient algorithmic implementations.

Shearlets
Similar to wavelets, shearlets do not have a unique system. Dilation, shearing, and
translation operations generate the shearlets. A dilation can be expressed as a matrix,
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Aa =
a1/2 0

0 a−1/2
 where a ∈ ℝ+ . A shear can be expressed as Ss =

1 s
0 1

 where s ∈ ℝ . The

variable s parameterizes orientations.

If the function ψ ∈ L2(ℝ2) satisfies certain (admissibility) conditions, then the set of
functions

SH ψ = ψa, s, t = a3/4ψ(SsAa( · − t))

is a continuous shearlet system where a and s are defined as noted earlier, and t ∈ ℝ2 .

If you discretize the dilation, shearing, and translation parameters appropriately, you
obtain a discrete shearlet system:

SH(ψ) = ψ j, k, m = 23 4 jψ SkA2 j · −m : j, k ∈ ℤ, m ∈ ℤ2 .

The function shearletSystem creates a cone-adapted bandlimited shearlet system. The
implementation of the shearletSystem function follows the approach described in
Häuser and Steidl [6]. The shearlet system is an example of a frame, which you can
normalize to create a Parseval frame. The discrete shearlet transform of a function
f ∈ L2(ℝ2) is the inner product of f  with all the shearlets in the discrete shearlet system

f , ψ j, k, m  where ( j, k, m) ∈ ℤ × ℤ × ℤ2 . You use sheart2 to take the discrete shearlet
transform of an image. For additional information, see the “References” on page 3-229.

The following figure shows how a cone-adapted shearlet system partitions the 2-D
frequency plane. The image on the left shows the partition of a cone-adapted real-valued
shearlet system with one scale. The R region in the center is the lowpass part of the
system. In addition, the image includes a horizontal cone shearlet (symmetric in
frequency because it is real valued) and a vertical cone shearlet. The image on the right
depicts a system with three scales. The fan-like pattern gives a shearlet system its
directional sensitivity. Note that the number of shearing factors increases as the
frequency support of the shearlet increases. As the support in the frequency domain
increases, the support in the spatial domain decreases.
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The spectra of the real-valued shearlets are the same over the positive and negative ξ1, ξ2
supports. Shearlets in complex-valued shearlet systems partition individually, not in pairs.

Transform Type
Shearlets are either real valued or complex valued in the spatial domain. You specify the
transform type when you use shearletSystem to create the system. Real-valued
shearlets have two-sided frequency spectra. The Fourier transforms of the complex-valued
shearlets have support on only one half of the 2-D frequency space. The Fourier
transforms of both types of shearlets are real valued.
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3-D Discrete Wavelet Analysis
This section demonstrates the features of three-dimensional discrete wavelet analysis
using the Wavelet Toolbox software. The toolbox provides these functions for 3-D data
analysis. You use the Wavelet 3-D tool in the Wavelet Analyzer app to perform all tasks
except the first task.

• Getting information on the command line functions
• Loading 3-D data
• Analyzing a 3-D data
• Selecting and displaying slices
• Creating a slice movie
• Creating true 3-D display
• Importing and exporting information

Performing 3-D Analysis Using the Command Line
The example wavelet3ddemo and the documentation of the Analysis-Decomposition and
Synthesis-Reconstruction functions show how you can analyze 3-D arrays efficiently using
command line functions dedicated to the 3-D wavelet analysis. For more information, see
the function reference pages.

Analysis-Decomposition Functions

Function Name Purpose
dwt3 Single-level decomposition
wavedec3 Decomposition

Synthesis-Reconstruction Functions

Function Name Purpose
idwt3 Single-level reconstruction
waverec3 Full reconstruction
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Performing 3-D Analysis Using the Wavelet Analyzer App
In this section you explore the same 3-D data as in the wavelet3ddemo example, but you
use the Wavelet Analyzer app.

1 Start the 3-D Wavelet Analysis Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.

Click the Wavelet 3-D menu item. The discrete wavelet analysis tool for 3-D data
opens.

2 Load a 3-D array.

At the MATLAB command prompt, type
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load wmri

In the Wavelet 3-D tool, select File > Import Data. When the Import from
Workspace dialog box appears, select the X variable. Click OK to import the 3-D
data.

3 Analyze the 3-D array. Using the Wavelet and Level menus located in the upper part
of the tool, specify:

• The wavelet families (one per direction X, Y and Z)
• The decomposition level and the wavelet extension mode to be used for the analysis

For this analysis, accept the defaults: db1 wavelet for each direction, decomposition
at level 2 and symmetric extension mode (sym).

Click Decompose. After a pause for computation, the Wavelet 3-D tool displays its
analysis.
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Review the slices of data and wavelet components in the graphical display. These
slices are orthogonal to the z-direction as indicated by Slice Orientation in the
command part of the window. This option lets you choose the desired slice orientation.

The first row of the graphical display area displays from left to right and for Z = 1:
• The original data slice
• The approximation at level 2 slice (low-pass component APP2)
• The slice which is the sum of all the components from level 1 to level 2, different from

the lowpass one.

The x-labels of the three axes give you the name and the size of the displayed data.
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The next two lines of axes, display the wavelet coefficients at level 2, which is the desired
level of the analysis. In the first line, the first graph contains the coefficients of
approximation at level 2. The remaining seven axes display the seven types of wavelet
coefficients at level 2. These coefficients contain the x-labels of the eight axes and display
the name, type and size of the displayed data.

For example, in the third graphic of the bottom line, you can see the Cfs-DAD coefficients
at level 2, which correspond to an array of size 32 x 32 x 7. The name of the DAD
coefficients group indicates that it is obtained using

• The highpass filter in the x-direction (D) for detail
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• The lowpass filter in the y-direction (A) for approximation
• The highpass filter in the z-direction (D), leading to the DAD component

You use the Displayed Level in the command part of the window to choose the level
of the displayed component, from 1 to the decomposition level.

You can modify characteristics of the display using the options in the command part of
the window. Each pair of sliders controls part of graphical array, the original and the
reconstructed slices with the first pair or the coefficients slices with the second pair.
Above each slider you can see the number of slices in the current slice orientation.

Using the slider (or by directly editing the values) of Rec. Z-Slice, choose slice
number twelve. Similarly, choose slice number two using Cfs. Z-Slice.
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The Slice Movie button lets you see a movie of all the slices, first for the
reconstructed slices and then for the coefficients slices. In this case, the movie
contains 27 reconstructed images and 7 coefficients images.

3D Display lets you examine the original data and the wavelet components in true 3-D
mode. Click 3D Display and select APP1.
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A rotated 3-D view of the approximation at level 1 opens in a new window. Use the
sliders in the 3-D tool to examine the 3-D data.
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Importing and Exporting Information from the Wavelet
Analyzer App
You can import information from and export information either to disk or to the
workspace using the Wavelet 3-D graphical tool.
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Loading Information into the Wavelet 3-D Tool

To load 3-D data you have constructed in your MATLAB workspace into the Wavelet 3-D
tool, save the 3-D data in a MAT-file, using

M = magic(8); 
X = repmat(M,[1 1 8]); 
save magic3d X  
whos

where M and X are

Name Size Bytes Class
M 8x8 512 double
X 8x8x8 4096 double

To load this 3-D data into the Wavelet 3-D tool, use the menu option File > Load Data.
You then select the MAT-file to load.

Similarly, you can load information from the workspace using File > Import Data. You
then select the variable to load.

Saving Information to a File

You can save decompositions and approximations from the Wavelet 3-D tool to a file or to
the workspace.
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Saving Decompositions

The Wavelet 3-D tool lets you save the entire set of data from a discrete wavelet analysis
to a file. The toolbox creates a MAT-file in the current folder with a name you choose.

1 Open the Wavelet 3-D tool with File > Load Data, and select magic3d to load the 3-
D data file.

2 After analyzing your data, save it by using File > Save > Decomposition.
3 In the dialog box that appears, specify a folder and file name for storing the

decomposition data. Type the name dec_magic3d.
4 After saving the decomposition data to the file dec_magic3d.mat, load the variables

into your workspace.

load dec_magic3d 
whos 

where wdec is

Name Size Bytes Class
wdec 1x1 9182 struct

The variable wdec contains the wavelet decomposition structure.

wdec = 
     sizeINI: [8 8 8] 
       level: 2   
     filters: [1x1 struct] 
      mode: 'sym' 
       dec: {15x1 cell}   
     sizes: [3x3 double]
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Saving Approximations

You can process a 3-D data in the Wavelet 3-D tool and then save any desired
approximation, depending on the level chosen for the decomposition.

1 Open the Wavelet 3-D tool and load the file containing the 3-D data to analyze by
using File > Load Data

2 Select magic3d.
3 Select the File > Save > Approximations > Approximation at level 2 menu

option.
4 In the dialog box that appears, select a folder and file name for the MAT-file. For this

example, choose the name App2_magic3D.
5 Load the image data into your workspace.

load App2_magic3D 
whos

where x is

Name Size Bytes Class
x 8x8x8 4096 double
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Dual-Tree Wavelet Transforms
This example shows how the dual-tree complex discrete wavelet transform (DT-CWT)
provides advantages over the critically sampled DWT for signal, image, and volume
processing. The dual-tree DWT is implemented as two separate two-channel filter banks.
To gain the advantages described in this example, you cannot arbitrarily choose the
scaling and wavelet filters used in the two trees. The lowpass (scaling) and highpass
(wavelet) filters of one tree, {h0, h1}, must generate a scaling function and wavelet that
are approximate Hilbert transforms of the scaling function and wavelet generated by the
lowpass and highpass filters of the other tree, {g0, g1}. Therefore, the complex-valued
scaling functions and wavelets formed from the two trees are approximately analytic.

As a result, the dual-tree DWT exhibits less shift variance and more directional selectivity
than the critically sampled DWT with only a 2d redundancy factor for d-dimensional data.
The redundancy in the dual-tree DWT is significantly less than the redundancy in the
undecimated (stationary) DWT.

This example illustrates the approximate shift invariance of the dual-tree DWT, the
selective orientation of the dual-tree analyzing wavelets in 2-D and 3-D, and the use of the
dual-tree complex wavelet transform in image and volume denoising.

Near Shift Invariance of the Dual-Tree DWT

The DWT suffers from shift variance, meaning that small shifts in the input signal or
image can cause significant changes in the distribution of signal/image energy across
scales in the DWT coefficients. The DT-CWT is approximately shift invariant.

To demonstrate this on a test signal, construct two shifted discrete-time impulses 128
samples in length. One signal has the unit impulse at sample 60, while the other signal
has the unit impulse at sample 64. Both signals clearly have unit energy (ℓ2 norm).

kronDelta1 = zeros(128,1);
kronDelta1(60) = 1;
kronDelta2 = zeros(128,1);
kronDelta2(64) = 1;

Obtain the DWT and dual-tree DWT of the two signals down to level 3 with wavelet and
scaling filters of length 14. Extract the level-3 detail coefficients for comparison.

J = 3;   
dwt1 = dddtree('dwt',kronDelta1,J,'sym7');
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dwt2 = dddtree('dwt',kronDelta2,J,'sym7');
dwt1Cfs = dwt1.cfs{J};
dwt2Cfs = dwt2.cfs{J};
      
dt1 = dddtree('cplxdt',kronDelta1,J,'dtf3');
dt2 = dddtree('cplxdt',kronDelta2,J,'dtf3');      
dt1Cfs = dt1.cfs{J}(:,:,1)+1i*dt1.cfs{J}(:,:,2);
dt2Cfs = dt2.cfs{J}(:,:,1)+1i*dt2.cfs{J}(:,:,2);

Plot the absolute values of the DWT and DT-CWT coefficients for the two signals at level 3
and compute the energy (squared ℓ2 norms) of the coefficients.

figure
subplot(1,2,1)
stem(abs(dwt1Cfs),'markerfacecolor',[0 0 1])
title({'DWT';['Squared 2-norm = ' num2str(norm(dwt1Cfs,2)^2,3)]},...
    'fontsize',10)
subplot(1,2,2)
stem(abs(dwt2Cfs),'markerfacecolor',[0 0 1])
title({'DWT';['Squared 2-norm = ' num2str(norm(dwt2Cfs,2)^2,3)]},...
    'fontsize',10)
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figure
subplot(1,2,1)
stem(abs(dt1Cfs),'markerfacecolor',[0 0 1])
title({'Dual-tree DWT';['Squared 2-norm = ' num2str(norm(dt1Cfs,2)^2,3)]},...
    'fontsize',10)
subplot(1,2,2)
stem(abs(dwt2Cfs),'markerfacecolor',[0 0 1])
title({'Dual-tree DWT';['Squared 2-norm = ' num2str(norm(dt2Cfs,2)^2,3)]},...
    'fontsize',10)

 Dual-Tree Wavelet Transforms

3-245



Note the four sample shift in the signal has caused an almost 6.5% change in the energy
of the level-3 DWT wavelet coefficients. However, the dual-tree wavelet coefficients show
only a 0.3% change in energy.

To demonstrate the utility of approximate shift invariance in real data, we analyze an
electrocardiogram (ECG) signal. The sampling interval for the ECG signal is 1/180
seconds. The data are taken from Percival & Walden [3], p.125 (data originally provided
by William Constantine and Per Reinhall, University of Washington). For convenience, we
take the data to start at t=0.

load wecg
dt = 1/180;
t = 0:dt:(length(wecg)*dt)-dt;
figure
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plot(t,wecg)
xlabel('Seconds')
ylabel('Millivolts')

The large positive peaks approximately 0.7 seconds apart are the R waves of the cardiac
rhythm. First, decompose the signal using the critically sampled DWT and plot the
original signal along with the level-2 and level-3 wavelet coefficients. The level-2 and
level-3 coefficients were chosen because the R waves are isolated most prominently in
those scales for the given sampling rate.

J = 6; 
dtDWT1 = dddtree('dwt',wecg,J,'farras');
details = zeros(2048,3);
details(2:4:end,2) = dtDWT1.cfs{2};
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details(4:8:end,3) = dtDWT1.cfs{3};
subplot(3,1,1)
stem(t,details(:,2),'Marker','none','ShowBaseline','off')
title('Level 2')
ylabel('mV')
subplot(3,1,2)
stem(t,details(:,3),'Marker','none','ShowBaseline','off')
title('Level 3')
ylabel('mV')
subplot(3,1,3)
plot(t,wecg)
title('Original Signal')
xlabel('Seconds')
ylabel('mV')
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Repeat the above analysis for the dual-tree transform. In this case, just plot the real part
of the dual-tree coefficients at levels 2 and 3.

dtcplx1 = dddtree('cplxdt',wecg,J,'dtf3');
details = zeros(2048,3);
details(2:4:end,2) = dtcplx1.cfs{2}(:,1,1)+1i*dtcplx1.cfs{2}(:,1,2);
details(4:8:end,3) = dtcplx1.cfs{3}(:,1,1)+1i*dtcplx1.cfs{3}(:,1,2);
subplot(3,1,1)
stem(t,real(details(:,2)),'Marker','none','ShowBaseline','off')
title('Level 2')
ylabel('mV')
subplot(3,1,2)
stem(t,real(details(:,3)),'Marker','none','ShowBaseline','off')
title('Level 3')
ylabel('mV')
subplot(3,1,3)
plot(t,wecg)
title('Original Signal')
xlabel('Seconds')
ylabel('mV')
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Both the critically sampled and dual-tree wavelet transforms localize an important feature
of the ECG waveform to similar scales.

An important application of wavelets in 1-D signals is to obtain an analysis of variance by
scale. It stands to reason that this analysis of variance should not be sensitive to circular
shifts in the input signal. Unfortunately, this is not the case with the critically sampled
DWT. To demonstrate this, we circularly shift the ECG signal by 4 samples, analyze the
unshifted and shifted signals with the critically sampled DWT, and calculate the
distribution of energy across scales.

wecgShift = circshift(wecg,4);
dtDWT2 = dddtree('dwt',wecgShift,J,'farras');
sigenrgy = norm(wecg,2)^2;
enr1 = cell2mat(cellfun(@(x)(norm(x,2)^2/sigenrgy)*100,dtDWT1.cfs,'uni',0));
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enr2 = cell2mat(cellfun(@(x)(norm(x,2)^2/sigenrgy)*100,dtDWT2.cfs,'uni',0));
levels = {'D1';'D2';'D3';'D4';'D5';'D6';'A6'};
enr1 = enr1(:);
enr2 = enr2(:);
table(levels,enr1,enr2,'VariableNames',{'Level','enr1','enr2'})

ans=7×3 table
    Level      enr1      enr2 
    ______    ______    ______

    {'D1'}    4.1994    4.1994
    {'D2'}     8.425     8.425
    {'D3'}    13.381    10.077
    {'D4'}    7.0612    10.031
    {'D5'}    5.4606    5.4436
    {'D6'}    3.1273    3.4584
    {'A6'}    58.345    58.366

Note that the wavelet coefficients at levels 3 and 4 show approximately 3% changes in
energy between the original and shifted signal. Next, we repeat this analysis using the
complex dual-tree wavelet transform.

dtcplx2 = dddtree('cplxdt',wecgShift,J,'dtf3');
cfs1 = cellfun(@squeeze,dtcplx1.cfs,'uni',0);
cfs2 = cellfun(@squeeze,dtcplx2.cfs,'uni',0);
cfs1 = cellfun(@(x) complex(x(:,1),x(:,2)),cfs1,'uni',0);
cfs2 = cellfun(@(x) complex(x(:,1),x(:,2)),cfs2,'uni',0);
dtenr1 = cell2mat(cellfun(@(x)(norm(x,2)^2/sigenrgy)*100,cfs1,'uni',0));
dtenr2 = cell2mat(cellfun(@(x)(norm(x,2)^2/sigenrgy)*100,cfs2,'uni',0));
dtenr1 = dtenr1(:);
dtenr2 = dtenr2(:);
table(levels,dtenr1,dtenr2, 'VariableNames',{'Level','dtenr1','dtenr2'})

ans=7×3 table
    Level     dtenr1    dtenr2
    ______    ______    ______

    {'D1'}     4.936     4.936
    {'D2'}    6.6691    6.6691
    {'D3'}    12.682    12.611
    {'D4'}    8.3891    8.4808
    {'D5'}    5.8868    5.8791
    {'D6'}     3.053    3.0415
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    {'A6'}    58.384    58.382

The dual-tree transform produces a consistent analysis of variance by scale for the
original signal and its circularly shifted version.

Directional Selectivity in Image Processing

The standard implementation of the DWT in 2-D uses separable filtering of the columns
and rows of the image. The LH, HL, and HH wavelets for Daubechies' least-asymmetric
phase wavelet with 4 vanishing moments (sym4) are shown in the following figure.

figure
J = 5;                      
L = 3*2^(J+1);
N = L/2^J;
Y = zeros(L,3*L);
dt = dddtree2('dwt',Y,J,'sym4');
dt.cfs{J}(N/3,N/2,1) = 1;
dt.cfs{J}(N/2,N/2+N,2) = 1;
dt.cfs{J}(N/2,N/2+2*N,3) = 1;
dwtImage = idddtree2(dt);
imagesc(dwtImage)
axis xy
axis off
title({'Critically Sampled DWT';'2-D separable wavelets (sym4) -- LH, HL, HH'})
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Note that the LH and HL wavelets have clear horizontal and vertical orientations
respectively. However, the HH wavelet on the far right mixes both the +45 and -45 degree
directions, producing a checkerboard artifact. This mixing of orientations is due to the
use of real-valued separable filters. The HH real-valued separable filter has passbands in
all four high frequency corners of the 2-D frequency plane.

The dual-tree DWT achieves directional selectivity by using wavelets that are
approximately analytic, meaning that they have support on only one half of the frequency
axis. In the dual-tree DWT, there are six subbands for both the real and imaginary parts.
The six real parts are formed by adding the outputs of column filtering followed by row
filtering of the input image in the two trees. The six imaginary parts are formed by
subtracting the outputs of column filtering followed by row filtering.
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The filters applied to the columns and rows may be from the same filter pair, {h0, h1} or
{g0, g1}, or from different filter pairs, {h0, g1}, {g0, h1}. The following code shows the
orientation of the 12 wavelets corresponding to the real and imaginary parts of the
complex oriented dual-tree DWT.

J = 4;
L = 3*2^(J+1);
N = L/2^J;
Y = zeros(2*L,6*L);
wt = dddtree2('cplxdt',Y,J,'dtf3');
wt.cfs{J}(N/2,N/2+0*N,2,2,1) = 1;
wt.cfs{J}(N/2,N/2+1*N,3,1,1) = 1;
wt.cfs{J}(N/2,N/2+2*N,1,2,1) = 1;
wt.cfs{J}(N/2,N/2+3*N,1,1,1) = 1;
wt.cfs{J}(N/2,N/2+4*N,3,2,1) = 1;
wt.cfs{J}(N/2,N/2+5*N,2,1,1) = 1;
wt.cfs{J}(N/2+N,N/2+0*N,2,2,2) = 1;
wt.cfs{J}(N/2+N,N/2+1*N,3,1,2) = 1;
wt.cfs{J}(N/2+N,N/2+2*N,1,2,2) = 1;
wt.cfs{J}(N/2+N,N/2+3*N,1,1,2) = 1;
wt.cfs{J}(N/2+N,N/2+4*N,3,2,2) = 1;
wt.cfs{J}(N/2+N,N/2+5*N,2,1,2) = 1;
waveIm = idddtree2(wt);
imagesc(waveIm)
axis off
title('Complex Dual-Tree 2-D Wavelets')
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The top row of the preceding figure shows the six directional wavelets of the real oriented
dual-tree wavelet transform. The second row shows the imaginary parts. Together the
real and imaginary parts form the complex oriented dual-tree wavelet transform. The real
and imaginary parts are oriented in the same direction. You can use dddtree2 with the
'realdt' option to obtain the real oriented dual-tree DWT, which uses only the real
parts. Using the real oriented dual-tree wavelet transform, you can achieve directional
selectivity, but you do not gain the full benefit of using analytic wavelets such as
approximate shift invariance.

Edge Representation in Two Dimensions

The approximate analyticity and selective orientation of the complex dual-tree wavelets
provide superior performance over the standard 2-D DWT in the representation of edges
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in images. To illustrate this, we analyze test images with edges consisting of line and
curve singularities in multiple directions using the critically sampled 2-D DWT and the 2-
D complex oriented dual-tree transform. First, analyze an image of an octagon, which
consists of line singularities.

load woctagon
figure
imagesc(woctagon)
colormap gray
title('Original Image')
axis equal
axis off
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Decompose the image down to level 4 and reconstruct an image approximation based on
the level-4 detail coefficients.

dtcplx = dddtree2('cplxdt',woctagon,4,'dtf3');
dtDWT = dddtree2('dwt',woctagon,4,'farras');

dtcplx.cfs{1} = zeros(size(dtcplx.cfs{1}));
dtcplx.cfs{2} = zeros(size(dtcplx.cfs{2}));
dtcplx.cfs{3} = zeros(size(dtcplx.cfs{3}));
dtcplx.cfs{5} = zeros(size(dtcplx.cfs{5}));

dtDWT.cfs{1} = zeros(size(dtDWT.cfs{1}));
dtDWT.cfs{2} = zeros(size(dtDWT.cfs{2}));
dtDWT.cfs{3} = zeros(size(dtDWT.cfs{3}));
dtDWT.cfs{5} = zeros(size(dtDWT.cfs{5}));

dtImage = idddtree2(dtcplx);
dwtImage = idddtree2(dtDWT);
subplot(1,2,1)
imagesc(dtImage)
axis equal
axis off
colormap gray
title('Complex Oriented Dual-Tree')
subplot(1,2,2)
imagesc(dwtImage)
axis equal
axis off
colormap gray
title('DWT')
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Next, analyze an octagon with hyperbolic edges. The edges in the hyperbolic octagon are
curve singularities.

load woctagonHyperbolic
figure
imagesc(woctagonHyperbolic)
colormap gray
title('Octagon with Hyperbolic Edges')
axis equal
axis off
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Again, decompose the image down to level 4 and reconstruct an image approximation
based on the level-4 detail coefficients for both the standard 2-D DWT and the complex
oriented dual-tree DWT.

dtcplx = dddtree2('cplxdt',woctagonHyperbolic,4,'dtf3');
dtDWT = dddtree2('dwt',woctagonHyperbolic,4,'farras');

dtcplx.cfs{1} = zeros(size(dtcplx.cfs{1}));
dtcplx.cfs{2} = zeros(size(dtcplx.cfs{2}));
dtcplx.cfs{3} = zeros(size(dtcplx.cfs{3}));
dtcplx.cfs{5} = zeros(size(dtcplx.cfs{5}));

dtDWT.cfs{1} = zeros(size(dtDWT.cfs{1}));
dtDWT.cfs{2} = zeros(size(dtDWT.cfs{2}));
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dtDWT.cfs{3} = zeros(size(dtDWT.cfs{3}));
dtDWT.cfs{5} = zeros(size(dtDWT.cfs{5}));

dtImage = idddtree2(dtcplx);
dwtImage = idddtree2(dtDWT);
subplot(1,2,1)
imagesc(dtImage)
axis equal
axis off
colormap gray
title('DT-CWT')
subplot(1,2,2)
imagesc(dwtImage)
axis equal
axis off
colormap gray
title('DWT')
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Note that the ringing artifacts evident in the 2-D critically sampled DWT are absent in the
2-D DT-CWT of both images. The DT-CWT more faithfully reproduces line and curve
singularities.

Image Denoising

Because of the ability to isolate distinct orientations in separate subbands, the dual-tree
DWT is often able to outperform the standard separable DWT in applications like image
denoising. To demonstrate this, use the helper function helperCompare2DDenoising.
The helper function loads an image and adds zero-mean white Gaussian noise with
σ = 25. For a user-supplied range of thresholds, the function compares denoising using
soft thresholding for the critically sampled DWT, the real oriented dual-tree DWT, and the
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complex oriented dual-tree DWT. For each threshold value, the root-mean-square (RMS)
error and peak signal-to-noise ratio (PSNR) are displayed.

numex = 3;
helperCompare2DDenoising(numex,0:2:100,'PlotMetrics');
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Both the real oriented and the complex oriented dual-tree DWTs outperform the standard
DWT in RMS error and PSNR.

Next, obtain the denoised images for a threshold value of 25, which is equal to the
standard deviation of the additive noise.

numex = 3;
helperCompare2DDenoising(numex,25,'PlotImage');
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With a threshold value equal to the standard deviation of the additive noise, the complex
oriented dual-tree transform provides a PSNR almost 4 dB higher than the standard 2-D
DWT.

Directional Selectivity in 3-D

The ringing artifacts observed with the separable DWT in two dimensions is exacerbated
when extending wavelet analysis to higher dimensions. The DT-CWT enables you to
maintain directional selectivity in 3-D with minimal redundancy. In 3-D, there are 28
wavelet subbands in the dual-tree transform.

To demonstrate the directional selectivity of the 3-D dual-tree wavelet transform, visualize
example 3-D isosurfaces of both 3-D dual-tree and separable DWT wavelets. First,
visualize the real and imaginary parts separately of two dual-tree subbands.

helperVisualize3D('Dual-Tree',28,'separate');
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helperVisualize3D('Dual-Tree',25,'separate');
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The red portion of the isosurface plot indicates the positive excursion of the wavelet from
zero, while blue denotes the negative excursion. You can clearly see the directional
selectivity in space of the real and imaginary parts of the dual-tree wavelets. Now
visualize one of the dual-tree subbands with the real and imaginary plots plotted together
as one isosurface.

helperVisualize3D('Dual-Tree',25,'real-imaginary');
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The preceding plot demonstrates that the real and imaginary parts are shifted versions of
each other in space. This reflects the fact that the imaginary part of the complex wavelet
is the approximate Hilbert transform of the real part. Next, visualize the isosurface of a
real orthogonal wavelet in 3-D for comparison.

helperVisualize3D('DWT',7);
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The mixing of orientations observed in the 2-D DWT is even more pronounced in 3-D. Just
as in the 2-D case, the mixing of orientations in 3-D leads to significant ringing, or
blocking artifacts. To demonstrate this, examine the 3-D DWT and DT-CWT wavelet details
of a spherical volume. The sphere is 64-by-64-by-64.

load sphr
[A,D] = dualtree3(sphr,2,'excludeL1');
A = zeros(size(A));
sphrDTCWT = idualtree3(A,D);
montage(reshape(sphrDTCWT,[64 64 1 64]),'DisplayRange',[])
title('DT-CWT Level 2 Details')
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Compare the preceding plot against the second-level details based on the separable DWT.

sphrDEC = wavedec3(sphr,2,'sym4','mode','per');
sphrDEC.dec{1} = zeros(size(sphrDEC.dec{1}));
for kk = 2:8
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    sphrDEC.dec{kk} = zeros(size(sphrDEC.dec{kk}));
end
sphrrecDWT = waverec3(sphrDEC);
figure
montage(reshape(sphrrecDWT,[64 64 1 64]),'DisplayRange',[])
title('DWT Level 2 Details')
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Zoom in on the images in both the DT-CWT and DWT montages and you will see how
prominent the blocking artifacts in the DWT details are compared to the DT-CWT.
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Volume Denoising

Similar to the 2-D case, the directional selectivity of the 3-D DT-CWT often leads to
improvements in volume denoising.

To demonstrate this, consider an MRI dataset consisting of 16 slices. Gaussian noise with
a standard deviation of 10 has been added to the original dataset. Display the noisy
dataset.

load MRI3D
montage(reshape(noisyMRI,[128 128 1 16]),'DisplayRange',[])
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Note that the original SNR prior to denoising is approximately 11 dB.

20*log10(norm(origMRI(:),2)/norm(origMRI(:)-noisyMRI(:),2))

ans = 11.2997
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Denoise the MRI dataset down to level 4 using both the DT-CWT and the DWT. Similar
wavelet filter lengths are used in both cases. Plot the resulting SNR as a function of the
threshold. Display the denoised results for both the DT-CWT and DWT obtained at the
best SNR.

[imrecDTCWT,imrecDWT] = helperCompare3DDenoising(origMRI,noisyMRI);
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figure
montage(reshape(imrecDTCWT,[128 128 1 16]),'DisplayRange',[])
title('DT-CWT Denoised Volume')
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figure
montage(reshape(imrecDWT,[128 128 1 16]),'DisplayRange',[])
title('DWT Denoised Volume')
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Summary

We have shown that the dual-tree DWT possesses the desirable properties of near shift
invariance and directional selectivity not achievable with the critically sampled DWT. We
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have demonstrated how these properties can result in improved performance in signal
analysis, the representation of edges in images and volumes, and image and volume
denoising.
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Analytic Wavelets Using the Dual-Tree Wavelet
Transform

This example shows how to create approximately analytic wavelets using the dual-tree
complex wavelet transform. The example demonstrates that you cannot arbitrarily choose
the analysis (decomposition) and synthesis (reconstruction) filters to obtain an
approximately analytic wavelet. The FIR filters in the two filter banks must be carefully
constructed in order to obtain an approximately analytic wavelet transform and derive the
benefits of the dual-tree transform.

Obtain the lowpass and highpass analysis filters.

DF = dtfilters('dtf1');

DF is a 1-by-2 cell array of N-by-2 matrices containing the first-stage lowpass and
highpass filters, DF{1}, and the lowpass and highpass filters for subsequent stages,
DF{2}.

Create the zero signal 256 samples in length. Obtain two dual-tree transforms of the zero
signal down to level 5.

x = zeros(256,1);
wt1 = dddtree('cplxdt',x,5,DF{1},DF{2});
wt2 = dddtree('cplxdt',x,5,DF{1},DF{2});

Set a single level-five detail coefficient in each of the two trees to 1 and invert the
transform to obtain the wavelets.

wt1.cfs{5}(5,1,1) = 1;
wt2.cfs{5}(5,1,2) = 1;
wav1 = idddtree(wt1);
wav2 = idddtree(wt2);

Form the complex wavelet using the first tree as the real part and the second tree as the
imaginary part. Plot the real and imaginary parts of the wavelet.

analwav = wav1+1i*wav2;
plot(real(analwav)); hold on;
plot(imag(analwav),'r')
plot(abs(analwav),'k','linewidth',2)
axis tight;
legend('Real part','Imaginary part','Magnitude','Location','Northwest');
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Fourier transform the analytic wavelet and plot the magnitude.

zdft = fft(analwav);
domega = (2*pi)/length(analwav);
omega = 0:domega:(2*pi)-domega;
clf;
plot(omega,abs(zdft))
xlabel('Radians/sample');
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The Fourier transform of the wavelet has support on essentially only half of the frequency
axis.

Repeat the preceding procedure with two arbitrarily chosen orthogonal wavelets, 'db4'
and 'sym4'.

[LoD1,HiD1] = wfilters('db4');
[LoD2, HiD2] = wfilters('sym4');
df = {[LoD1' HiD1'],[LoD2',HiD2']};
wt1 = dddtree('cplxdt',x,5,df,df);
wt2 = dddtree('cplxdt',x,5,df,df);
wt1.cfs{5}(5,1,1) = 1;
wt2.cfs{5}(5,1,2) = 1;
wav1 = idddtree(wt1);
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wav2 = idddtree(wt2);
analwav = wav1+1i*wav2;
zdft = fft(analwav);
domega = (2*pi)/length(analwav);
omega = 0:domega:(2*pi)-domega;
clf;
plot(omega,abs(zdft))

Using arbitrary orthogonal wavelets in the two trees does not result in approximately
analytic wavelets. The Fourier transform of the resulting wavelet has support over the
entire frequency axis.
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Multifractal Analysis
This example shows how to use wavelets to characterize local signal regularity. The ability
to describe signal regularity is important when dealing with phenomena that have no
characteristic scale. Signals with scale-free dynamics are widely observed in a number of
different application areas including biomedical signal processing, geophysics, finance,
and internet traffic. Whenever you apply some analysis technique to your data, you are
invariably assuming something about the data. For example, if you use autocorrelation or
power spectral density (PSD) estimation, you are assuming that your data is translation
invariant, which means that signal statistics like mean and variance do not change over
time. Signals with no characteristic scale are scale-invariant. This means that the signal
statistics do not change if we stretch or shrink the time axis. Classical signal processing
techniques typically fail to adequately describe these signals or reveal differences
between signals with different scaling behavior. In these cases, fractal analysis can
provide unique insights. Some of the following examples use pwelch and xcorr for
illustration. To execute that code, you must have the Signal Processing Toolbox™.

Power Law Processes

An important class of signals with scale-free dynamics have autocorrelation or power
spectral densities (PSD) that follow a power law. A power-law process has a PSD of the
form C ω −α for some positive constant, C, and some exponent α. In some instances, the
signal of interest exhibits a power-law PSD. In other cases, the signal of interest is
corrupted by noise with a power-law PSD. These noises are often referred to as colored.
Being able to estimate the exponent from realizations of these processes has important
implications. For one, it allows you to make inferences about the mechanism generating
the data as well as providing empirical evidence to support or reject theoretical
predictions. In the case of an interfering noise with a power-law PSD, it is helpful in
designing effective filters.

Brown noise, or a Brownian process, is one such colored noise process with a theoretical
exponent of α = 2. One way to estimate the exponent of a power law process is to fit a
least-squares line to a log-log plot of the PSD.

load brownnoise;
[Pxx,F] = pwelch(brownnoise,kaiser(1000,10),500,1000,1);
plot(log10(F(2:end)),log10(Pxx(2:end)));
grid on;
xlabel('log10(F)'); ylabel('log10(Pxx)');
title('Log-Log Plot of PSD Estimate')
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Regress the log PSD values on the log frequencies. Note you must ignore zero frequency
to avoid taking the log of zero.

Xpred = [ones(length(F(2:end)),1) log10(F(2:end))];
b = lscov(Xpred,log10(Pxx(2:end)));
y = b(1)+b(2)*log10(F(2:end));
hold on;
plot(log10(F(2:end)),y,'r--');
title(['Estimated Slope is ' num2str(b(2))]);
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Alternatively, you can use both discrete and continuous wavelet analysis techniques to
estimate the exponent. The relationship between the Holder exponent, H, returned by
dwtleader and wtmm and α is this scenario is α = 2H + 1.

[dhbrown,hbrown,cpbrown] = dwtleader(brownnoise);
hexp = wtmm(brownnoise);
fprintf('Wavelet leader estimate is %1.2f\n',-2*cpbrown(1)-1);

Wavelet leader estimate is -1.91

fprintf('WTMM estimate is %1.2f\n',-2*hexp-1);

WTMM estimate is -2.00
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In this case, the estimate obtained by fitting a least-squares line to the log of the PSD
estimate and those obtained using wavelet methods are in good agreement.

Multifractal Analysis

There are a number of real-world signals that exhibit nonlinear power-law behavior that
depends on higher-order moments and scale. Multifractal analysis provides a way to
describe these signals. Multifractal analysis consists of determining whether some type of
power-law scaling exists for various statistical moments at different scales. If this scaling
behavior is characterized by a single scaling exponent, or equivalently is a linear function
of the moments, the process is monofractal. If the scaling behavior by scale is a nonlinear
function of the moments, the process is multifractal. The brown noise from the previous
section is an example of monofractal process and this is demonstrated in a later section.

To illustrate how fractal analysis can reveal signal structure not apparent with more
classic signal processing techniques, load RWdata.mat which contains two time series
(Ts1 and Ts2) with 8000 samples each. Plot the data.

load RWdata;
figure;
plot([Ts1 Ts2]); grid on;
legend('Ts1','Ts2','Location','NorthEast');
xlabel('Time'); ylabel('Amplitude');
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The signals have very similar second order statistics. If you look at the means, RMS
values, and variances of Ts1 and Ts2, the values are almost identical. The PSD estimates
are also very similar.

pwelch([Ts1 Ts2],kaiser(1e3,10))
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The autocorrelation sequences decay very slowly for both time series and are not
informative for differentiating the time series.

[xc1,lags] = xcorr(Ts1,300,'coef');
xc2 = xcorr(Ts2,300,'coef');
subplot(2,1,1)
hs1 = stem(lags(301:end),xc1(301:end));
hs1.Marker = 'none';
title('Autocorrelation Sequence of Ts1');
subplot(2,1,2)
hs2 = stem(lags(301:end),xc2(301:end));
hs2.Marker = 'none';
title('Autocorrelation Sequence of Ts2');
xlabel('Lag')
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Even at a lag of 300, the autocorrelations are 0.94 and 0.96 respectively.

The fact that these signals are very different is revealed through fractal analysis.
Compute and plot the multifractal spectra of the two signals. In multifractal analysis,
discrete wavelet techniques based on the so-called wavelet leaders are the most robust.

[dh1,h1,cp1,tauq1] = dwtleader(Ts1);
[dh2,h2,cp2,tauq2] = dwtleader(Ts2);
figure;
hp = plot(h1,dh1,'b-o',h2,dh2,'b-^');
hp(1).MarkerFaceColor = 'b';
hp(2).MarkerFaceColor = 'r';
grid on;
xlabel('h'); ylabel('D(h)');

3 Discrete Wavelet Analysis

3-292



legend('Ts1','Ts2','Location','NorthEast');
title('Multifractal Spectrum');

The multifractal spectrum effectively shows the distribution of scaling exponents for a
signal. Equivalently, the multifractal spectrum provides a measure of how much the local
regularity of a signal varies in time. A signal that is monofractal exhibits essentially the
same regularity everywhere in time and therefore has a multifractal spectrum with
narrow support. Conversely, A multifractal signal exhibits variations in signal regularity
over time and has a multifractal spectrum with wider support. From the multifractal
spectra shown here, Ts2, appears to be a monofractal signal characterized by a cluster of
scaling exponents around 0.78. On the other hand, Ts1, demonstrates a wide-range of
scaling exponents indicating that it is multifractal. Note the total range of scaling
(Holder) exponents for Ts2 is just 0.14, while it is 4.6 times as big for Ts1. Ts2 is actually
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an example of a monofractal fractional Brownian motion (fBm) process with a Holder
exponent of 0.8 and Ts1 is a multifractal random walk.

You can also use the scaling exponent outputs from dwtleader along with the 2nd
cumulant to help classify a process as monofractal vs. multifractal. Recall a monofractal
process has a linear scaling law as a function of the statistical moments, while a
multifractal process has a nonlinear scaling law. dwtleader uses the range of moments
from -5 to 5 in estimating these scaling laws. A plot of the scaling exponents for the fBm
and multifractal random walk (MRW) process shows the difference.

plot(-5:5,tauq1,'b-o',-5:5,tauq2,'r-^');
grid on;
xlabel('Q-th Moment'); ylabel('Scaling Exponents');
title('Scaling Exponents');
legend('MRW','fBm','Location','SouthEast');
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The scaling exponents for the fBm process are a linear function of the moments, while the
exponents for the MRW process show a departure from linearity. The same information is
summarized by the 1st, 2nd, and 3rd cumulants. The first cumulant is the estimate of the
slope, in other words, it captures the linear behavior. The second cumulant captures the
first departure from linearity. You can think of the second cumulant as the coefficients for
a second-order (quadratic) term, while the third cumulant characterizes a more
complicated departure of the scaling exponents from linearity. If you examine the 2nd and
3rd cumulants for the MRW process, they are 6 and 42 times as large as the
corresponding cumulants for the fBm data. In the latter case, the 2nd and 3rd cumulants
are almost zero as expected.

For comparison, add the multifractal spectrum for the brown noise computed in an earlier
example.
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hp = plot(h1,dh1,'b-o',h2,dh2,'b-^',hbrown,dhbrown,'r-v');
hp(1).MarkerFaceColor = 'b';
hp(2).MarkerFaceColor = 'r';
hp(3).MarkerFaceColor = 'k';
grid on;
xlabel('h'); ylabel('D(h)');
legend('Ts1','Ts2','brown noise','Location','SouthEast');
title('Multifractal Spectrum');

Where is the Process Going Next? Persistent and Antipersistent Behavior

Both the fractional Brownian process (Ts2) and the brown noise series are monofractal.
However, a simple plot of the two time series shows that they appear quite different.
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subplot(2,1,1)
plot(brownnoise); title('Brown Noise');
grid on; axis tight;
subplot(2,1,2)
plot(Ts2); title('fBm H=0.8'); grid on;
axis tight;

The fBm data is much smoother than the brown noise. Brown noise, also known as a
random walk, has a theoretical Holder exponent of 0.5. This value forms a boundary
between processes with Holder exponents, H, from 0<H<0.5 and those with Holder
exponents in the interval 0.5<H<1. The former are called antipersistent and exhibit short
memory. The latter are called persistent and exhibit long memory. In antipersistent time
series, an increase in value at time t is followed with a decrease in value at time t+1 with
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a high probability. Similarly, a decrease in value at time t is typically followed by an
increase in value at time t+1. In other words, the time series tends to always revert to its
mean value. In persistent time series, increases in value tend to be followed by
subsequent increases while decreases in value tend to be followed by subsequent
decreases.

To see some real-world examples of antipersistent time series, load and analyze the daily
log returns for the Taiwan Weighted and Seoul Composite stock indices. The daily returns
for both indices cover the approximate period from July, 1997 through April, 2016.

load StockCompositeData;
subplot(2,1,1)
plot(SeoulComposite); title('Seoul Composite Index - 07/1997-04/2016');
ylabel('Log Returns'); grid on;
subplot(2,1,2);
plot(TaiwanWeighted); title('Taiwan Weighted Index - 07/1997-04/2016');
ylabel('Log Returns');
grid on;
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Obtain and plot the multifractal spectra of these two time series.

[dhseoul,hseoul,cpseoul] = dwtleader(SeoulComposite);
[dhtaiwan,htaiwan,cptaiwan] = dwtleader(TaiwanWeighted);
figure;
plot(hseoul,dhseoul,'b-o','MarkerFaceColor','b');
hold on;
plot(htaiwan,dhtaiwan,'r-^','MarkerFaceColor','r');
xlabel('h'); ylabel('D(h)'); grid on;
title('Multifractal Spectrum');
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From the multifractal spectrum, it is clear that both time series are antipersistent. For
comparison, plot the multifractal spectra of the two financial time series along with the
brown noise and fBm data shown earlier.

plot(hbrown,dhbrown,'k-v','MarkerFaceColor','k');
plot(h2,dh2,'b-*','MarkerFaceColor','b');
legend('Seoul Composite','Taiwan Weighted Index','Brown Noise','FBM',...
    'Location','SouthEast');
hold off;
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Determining that a process is antipersistent or persistent is useful in predicting the
future. For example, a time series with long memory that is increasing can be expected to
continue increasing. While a time series that exhibits antipersistence can be expected to
move in the opposite direction.

Measuring Fractal Dynamics of Heart Rate Variability

Normal human heart rate variability measured as RR intervals displays multifractal
behavior. Further, reductions in this nonlinear scaling behavior are good predictors of
cardiac disease and even mortality.

As an example of an induced change in the fractal dynamics of heart rate variability,
consider a patient administered prostaglandin E1 due to a severe hypertensive episode.
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The data is part of RHRV, an R-based software package for heart rate variability analysis.
The authors have kindly granted permission for its use in this example.

Load and plot the data. The vertical red line marks the beginning of the effect of the
prostaglandin E1 on the heart rate and heart rate variability.

load hrvDrug;
plot(hrvDrug); grid on;
hold on;
plot([4642 4642],[min(hrvDrug) max(hrvDrug)],'r','linewidth',2);
hold off;
ylabel('Heart Rate'); xlabel('Sample');
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Split the data into pre-drug and post-drug data sets. Obtain and plot the multifractal
spectra of the two time series.

predrug = hrvDrug(1:4642);
postdrug = hrvDrug(4643:end);
[dhpre,hpre] = dwtleader(predrug);
[dhpost,hpost] = dwtleader(postdrug);
figure;
hl = plot(hpre,dhpre,'b-d',hpost,dhpost,'r-^');
hl(1).MarkerFaceColor = 'b';
hl(2).MarkerFaceColor = 'r';
xlabel('h'); ylabel('D(h)');
grid on;
legend('Predrug','Postdrug');
title('Multifractal Spectrum'); xlabel('h'); ylabel('D(h)');
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The induction of the drug has led to a 50% reduction in the width of the fractal spectrum.
This indicates a significant reduction in the nonlinear dynamics of the heart as measured
by heart rate variability. In this case, the reduction of the fractal dimension was part of a
medical intervention. In a different context, studies on groups of healthy individuals and
patients with congestive heart failure have shown that differences in the multifractal
spectra can differentiate these groups. Specifically, significant reductions in the width of
the multifractal spectrum is a marker of cardiac dysfunction.
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Wavelet Analysis of Financial Data
This example shows how to use wavelets to analyze financial data.

The separation of aggregate data into different time scales is a powerful tool for the
analysis of financial data. Different market forces effect economic relationships over
varying periods of time. Economic shocks are localized in time and within that time period
exhibit oscillations of varying frequency.

Some economic indicators lag, lead, or are coincident with other variables. Different
actors in financial markets view market mechanics over shorter and longer scales. Terms
like "short-run" and "long-run" are central in modeling the complex relationships between
financial variables.

Wavelets decompose time series data into different scales and can reveal relationships not
obvious in the aggregate data. Further, it is often possible to exploit properties of the
wavelet coefficients to derive scale-based estimators for variance and correlation and test
for significant differences.

Maximal Overlap Discrete Wavelet Transform -- Volatility by Scale

There are a number of different variations of the wavelet transform. This example focuses
on the maximal overlap discrete wavelet transform (MODWT). The MODWT is an
undecimated wavelet transform over dyadic (powers of two) scales, which is frequently
used with financial data. One nice feature of the MODWT for time series analysis is that it
partitions the data variance by scale. To illustrate this, consider the quarterly chain-
weighted U.S. real GDP data for 1947Q1 to 2011Q4. The data were transformed by first
taking the natural logarithm and then calculating the year-over-year difference. Obtain
the MODWT of the real GDP data down to level six with the 'db2' wavelet. Examine the
variance of the data and compare that to the variances by scale obtained with the
MODWT.

load GDPExampleData;
realgdpwt = modwt(realgdp,'db2',6);
vardata = var(realgdp,1);
varwt = var(realgdpwt,1,2);

In vardata you have the variance for the aggregate GDP time series. In varwt you have
the variance by scale for the MODWT. There are seven elements in varwt because you
obtained the MODWT down to level six resulting in six wavelet coefficient variances and
one scaling coefficient variance. Sum the variances by scale to see that the variance is
preserved. Plot the wavelet variances by scale ignoring the scaling coefficient variance.
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totalMODWTvar = sum(varwt);
bar(varwt(1:end-1,:))
AX = gca;
AX.XTickLabels = {'[2 4)','[4 8)','[8 16)','[16 32)','[32 64)','[64 128)'};
xlabel('Quarters')
ylabel('Variance')
title('Wavelet Variance by Scale')

Because this data is quarterly, the first scale captures variations between two and four
quarters, the second scale between four and eight, the third between 8 and 16, and so on.

From the MODWT and a simple bar plot, you see that cycles in the data between 8 and 32
quarters account for the largest variance in the GDP data. If you consider the wavelet
variances at these scales, they account for 57% of the variability in the GDP data. This
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means that oscillations in the GDP over a period of 2 to 8 years account for most of the
variability seen in the time series.

Great Moderation -- Testing for Changes in Volatility with the MODWT

Wavelet analysis can often reveal changes in volatility not evident in aggregate data.
Begin with a plot of the GDP data.

helperFinancialDataExample1(realgdp,year,'Year over Year Real U.S. GDP')

The shaded region is referred to as the "Great Moderation" signifying a period of
decreased macroeconomic volatility in the U.S. beginning in the mid 1980s.
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Examining the aggregate data, it is not clear that there is in fact reduced volatility in this
period. Use wavelets to investigate this by first obtaining a multiresolution analysis of the
real GDP data using the 'db2' wavelet down to level 6.

realgdpwt = modwt(realgdp,'db2',6,'reflection');
gdpmra = modwtmra(realgdpwt,'db2','reflection');

Plot the level-one details, D1. These details capture oscillations in the data between two
and four quarters in duration.

helperFinancialDataExample1(gdpmra(1,:),year,...
    'Year over Year Real U.S. GDP - D1')
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Examining the level-one details, it appears there is a reduction of variance in the period
of the Great Moderation.

Test the level-one wavelet coefficients for significant variance changepoints.

[pts_Opt,kopt,t_est] = wvarchg(realgdpwt(1,1:numel(realgdp)),2);
years(pts_Opt)

ans = 

  duration

   142 yrs

There is a variance changepoint identified in 1982. This example does not correct for the
delay introduced by the 'db2' wavelet at level one. However, that delay is only two
samples so it does not appreciably affect the results.

To assess changes in the volatility of the GDP data pre and post 1982, split the original
data into pre- and post-changepoint series. Obtain the wavelet transforms of the pre and
post datasets. In this case, the series are relatively short so use the Haar wavelet to
minimize the number of boundary coefficients. Compute unbiased estimates of the
wavelet variance by scale and plot the result.

tspre = realgdp(1:pts_Opt);
tspost = realgdp(pts_Opt+1:end);
wtpre = modwt(tspre,'haar',5);
wtpost = modwt(tspost,'haar',5);
prevar = modwtvar(wtpre,'haar','table');
postvar = modwtvar(wtpost,'haar','table');
xlab = {'[2Q,4Q)','[4Q,8Q)','[8Q,16Q)','[16Q,32Q)','[32Q,64Q)'};
helperFinancialDataExampleVariancePlot(prevar,postvar,'table',xlab)
title('Wavelet Variance By Scale');
legend('Pre 1982 Q2','Post 1982 Q2','Location','NorthWest');
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From the preceding plot, it appears there are significant differences between the
pre-1982Q2 and post-1982Q2 variances at scales between 2 and 16 quarters.

Because the time series are so short in this example, it can be useful to use biased
estimates of the variance. Biased estimates do not remove boundary coefficients. Use a
'db2' wavelet filter with four coefficients.

wtpre = modwt(tspre,'db2',5,'reflection');
wtpost = modwt(tspost,'db2',5,'reflection');
prevar = modwtvar(wtpre,'db2',0.95,'EstimatorType','biased','table');
postvar = modwtvar(wtpost,'db2',0.95,'EstimatorType','biased','table');
xlab = {'[2Q,4Q)','[4Q,8Q)','[8Q,16Q)','[16Q,32Q)','[32Q,64Q)'};
figure;
helperFinancialDataExampleVariancePlot(prevar,postvar,'table',xlab)
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title('Wavelet Variance By Scale');
legend('Pre 1982 Q2','Post 1982 Q2','Location','NorthWest');

The results confirm our original finding that the Great Moderation is manifested in
volatility reductions over scales from 2 to 16 quarters.

Wavelet Correlation Analysis of GDP Component Data

You can also use wavelets to analyze correlation between two datasets by scale. Examine
the correlation between the aggregate data on government spending and private
investment. The data cover the same period as the real GDP data and are transformed in
the exact same way.

[rho,pval] = corrcoef(privateinvest,govtexp);
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Government spending and personal investment demonstrate a weak, but statistically
significant, negative correlation of -0.215. Repeat this analysis using the MODWT.

wtPI = modwt(privateinvest,'db2',5,'reflection');
wtGE = modwt(govtexp,'db2',5,'reflection');
wcorrtable = modwtcorr(wtPI,wtGE,'db2',0.95,'reflection','table');
display(wcorrtable)

wcorrtable =

  6x6 table

          NJ      Lower        Rho         Upper        Pvalue      AdjustedPvalue
          ___    ________    ________    __________    _________    ______________

    D1    257    -0.29187    -0.12602      0.047192       0.1531         0.7502   
    D2    251    -0.54836    -0.35147      -0.11766    0.0040933       0.060171   
    D3    239    -0.62443    -0.35248    -0.0043207     0.047857        0.35175   
    D4    215    -0.70466    -0.32112       0.20764      0.22523        0.82773   
    D5    167    -0.63284     0.12965       0.76448      0.75962              1   
    S5    167    -0.63428     0.12728       0.76347      0.76392              1   

The multiscale correlation available with the MODWT shows a significant negative
correlation only at scale 2, which corresponds to cycles in the data between 4 and 8
quarters. Even this correlation is only marginally significant when adjusting for multiple
comparisons.

The multiscale correlation analysis reveals that the slight negative correlation in the
aggregate data is driven by the behavior of the data over scales of four to eight quarters.
When you consider the data over different time periods (scales), there is no significant
correlation.

Wavelet Cross-Correlation Sequences -- Leading and Lagging Variables

With financial data, there is often a leading or lagging relationship between variables. In
those cases, it is useful to examine the cross-correlation sequence to determine if lagging
one variable with respect to another maximizes their cross-correlation. To illustrate this,
consider the correlation between two components of the GDP -- personal consumption
expenditures and gross private domestic investment.

piwt = modwt(privateinvest,'fk8',5);
pcwt = modwt(pc,'fk8',5);
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figure;
modwtcorr(piwt,pcwt,'fk8')

Personal expenditure and personal investment are negatively correlated over a period of
2-4 quarters. At longer scales, there is a strong positive correlation between personal
expenditure and personal investment. Examine the wavelet cross-correlation sequence at
the scale representing 2-4 quarter cycles.

[xcseq,xcseqci,lags] = modwtxcorr(piwt,pcwt,'fk8');
zerolag = floor(numel(xcseq{1})/2)+1;
plot(lags{1}(zerolag:zerolag+20),xcseq{1}(zerolag:zerolag+20));
hold on;
plot(lags{1}(zerolag:zerolag+20),xcseqci{1}(zerolag:zerolag+20,:),'r--');
xlabel('Lag (Quarters)');
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grid on;
title('Wavelet Cross-Correlation Sequence -- [2Q,4Q)');

The finest-scale wavelet cross-correlation sequence shows a peak positive correlation at a
lag of one quarter. This indicates that personal investment lags personal expenditures by
one quarter.

Continuous Wavelet Analysis of U.S. Inflation Rate

Using discrete wavelet analysis, you are limited to dyadic scales. This limitation is
removed when using continuous wavelet analysis.

Load U.S. inflation rate data from May, 1961 to November, 2011.
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load CPIInflation;
figure
plot(yr,inflation)
AX = gca;
AX.XTick = 1962:10:2011;
title('CPI Inflation -- 1961 to 2011')
axis tight; grid on;
xlabel('Year')

In the time data, a slow oscillation appears in the early 1970s and seems to dissipate by
the late 1980s.

To characterize the periods of increased volatility, obtain the continuous wavelet
transform (CWT) of the data using the analytic Morlet wavelet.
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cwt(inflation,'amor',years(1/12));
AX = gca;
AX.XTick = 8/12:10:596/12;
AX.XTickLabels = yr(round(AX.XTick*12));

The CWT reveals the strongest oscillations in the inflation rate data in the approximate
range of 4-6 years. This volatility begins to dissipate by the mid 1980s and is
characterized by both a gradual reduction in inflation and a shift in volatility toward
longer periods. The strong volatility cycles in the 1970s and into the early 1980s are a
result of the 1970s energy crisis (oil shocks) which resulted in stagflation (stagnant
growth and inflation) in the major industrial economies. See [1] for an in-depth CWT-
based analysis of these and other macroeconomic data. This example reproduces a small
part of the broader and more detailed analysis in that paper.

 Wavelet Analysis of Financial Data

3-317



Conclusions

In this example you learned how to use the MODWT to analyze multiscale volatility and
correlation in financial time series data. The example also demonstrated how wavelets
can be used to detect changes in the volatility of a process over time. Finally, the example
showed how the CWT can be used to characterize periods of increased volatility in
financial time series. The references provide more detail on wavelet applications for
financial data and time series analysis.

Appendix

The following helper functions are used in this example.

*helperFinancialDataExample1

*helperFinancialDataExampleVariancePlot

*helperCWTTimeFreqPlot
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Time-Frequency Gallery
This gallery provides you with an overview of the time-frequency analysis features
available in the Signal Processing Toolbox and Wavelet Toolbox. The descriptions and
usage examples present various methods that you can use for your signal analysis.

Method Features Invertible Examples

“Short-Time
Fourier
Transform
(Spectrogram)”
on page 4-4

• The short-time Fourier
transform (STFT) has
fixed time-frequency
resolution.

• The spectrogram is the
magnitude squared of
STFT.

• stft: Yes
• spectrogram:

No

“Example: Whale
Song” on page 4-
7

“Continuous
Wavelet
Transform
(Scalogram)” on
page 4-9

• The continuous wavelet
transform (CWT) has a
variable time-
frequency resolution.

• The CWT preserves
time shifts and time
scalings.

Yes “Example: ECG
Signal” on page 4-
10

“Wigner-Ville
Distribution” on
page 4-11

• The Wigner-Ville
distribution (WVD) is
always real.

• Time and frequency
marginals correspond
to power and spectral
energy density.

• Time resolution of the
WVD is equal to the
number of input
samples.

No “Example:
Otoacoustic
Emission” on page
4-12
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Method Features Invertible Examples

“Reassignment
and
Synchrosqueezin
g” on page 4-
13

• Reassignment sharpens
localization of spectral
estimates.

• Synchrosqueezing
"condenses" time-
frequency maps around
curves of instantaneous
frequency.

• Both methods are
especially suited to
track and extract time-
frequency ridges

• pspectrum: No
• fsst, wsst: Yes “Example:

Echolocation Pulse”
on page 4-15

“Constant-Q
Gabor
Transform” on
page 4-22

• The constant-Q Gabor
transform (CQT) tiles
the time-frequency
plane with variable-
sized windows.

• The windows have
adaptable bandwidth
and sampling density.

• The ratio of center
frequency to
bandwidth (Q-factor)
for all windows is
constant.

Yes
“Example: Rock
Music” on page 4-
23

“Empirical Mode
Decomposition
and Hilbert-
Huang
Transform” on
page 4-24

• Empirical mode
decomposition (EMD)
decomposes signals
into intrinsic mode
functions.

• The Hilbert-Huang
transform (HHT)
computes the
instantaneous
frequency of each
empirical mode.

No “Example: Bearing
Vibration” on page
4-25
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Short-Time Fourier Transform (Spectrogram)
Description

• The short-time Fourier transform is a linear time-frequency representation useful in
the analysis of nonstationary multicomponent signals.

• The short-time Fourier transform is invertible.
• The spectrogram is the magnitude squared of the STFT.
• You can compute the cross-spectrogram of two signals to look for similarities in time-

frequency space.
• The persistence spectrum of a signal is a time-frequency view that shows the

percentage of the time that a given frequency is present in a signal. The persistence
spectrum is a histogram in power-frequency space. The longer a particular frequency
persists in a signal as the signal evolves, the higher its time percentage and thus the
brighter or "hotter" its color in the display.

Potential Applications

The applications of this time-frequency method include, but are not limited to:

• Audio signal processing: Fundamental frequency estimation, cross synthesis, spectral
envelope extraction, time-scale modification, time-stretching, and pitch shifting. (See
“Phase Vocoder with Different Synthesis and Analysis Windows” (Signal Processing
Toolbox) for more details.)

• Crack detection: Detect cracks in aluminum plates using dispersion curves of
ultrasonic Lamb waves.

• Sensor array processing: Sonar exploration, geophysical exploration, and
beamforming.

• Digital communications: Detection of frequency hopping signal.

How to Use

• stft computes the short-time Fourier transform. To invert the short-time Fourier
transform, use the istft function.

• pspectrum or spectrogram computes the spectrogram.
• xspectrogram computes the cross spectrogram of two signals.
• You can also use the spectrogram view in Signal Analyzer to view the spectrogram of

a signal.
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• Use the persistence spectrum option in pspectrum or Signal Analyzer to identify
signals hidden in other signals.

Example: Pulses and Oscillations

Generate a signal sampled at 5 kHz for 4 seconds. The signal consists of a set of pulses of
decreasing duration separated by regions of oscillating amplitude and fluctuating
frequency with an increasing trend.

fs = 5000;
t = 0:1/fs:4-1/fs;

x = 10*besselj(0,1000*(sin(2*pi*(t+2).^3/60).^5));

Compute and plot the short-time Fourier transform of the signal. Window the signal with
a 200-sample Kaiser window with shape factor β = 30.

stft(x,fs,'Window',kaiser(200,30))
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Example: Audio Signal with Decreasing Chirps

Load an audio signal that contains two decreasing chirps and a wideband splatter sound.

load splat

Set the overlap length to 96 samples. Plot the short-time Fourier transform.

stft(y,Fs,'OverlapLength',96)
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Example: Whale Song

Load a file that contains audio data from a Pacific blue whale, sampled at 4 kHz. The file
is from the library of animal vocalizations maintained by the Cornell University
Bioacoustics Research Program. The time scale in the data is compressed by a factor of
10 to raise the pitch and make the calls more audible.

whaleFile = fullfile(matlabroot,'examples','matlab','bluewhale.au');
[w,fs] = audioread(whaleFile);

Compute the spectrogram of the whale song with an overlap percentage equal to eighty
percent. Set the minimum threshold for the spectrogram to -50 dB.

pspectrum(w,fs,'spectrogram','Leakage',0.2,'OverlapPercent',80,'MinThreshold',-50)
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Example: Persistence Spectrum of Transient Signal

Load an interference narrowband signal embedded within a broadband signal.

load TransientSig

Compute the persistence spectrum of the signal. Both signal components are clearly
visible.

pspectrum(x,fs,'persistence', ...
    'FrequencyLimits',[100 290],'TimeResolution',1)
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Continuous Wavelet Transform (Scalogram)
Description

• The wavelet transform is a linear time-frequency representation that preserves time
shifts and time scalings.

• The continuous wavelet transform is good at detecting transients in nonstationary
signals, and for signals in which instantaneous frequency grows rapidly.

• The CWT is invertible.
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• The CWT tiles the time-frequency plane with variable-sized windows. The window
automatically widens in time, making it suitable for low-frequency phenomena, and
narrows for high frequency phenomena.

Potential Applications

The applications of this time-frequency method include, but are not limited to:

• Electrocardiograms (ECG): The most clinically useful information of the ECG signal is
found in the time intervals between its consecutive waves and amplitudes defined by
its features. The wavelet transform breaks down the ECG signal into scales, making it
easier to analyze the ECG signal in different frequency ranges easier to analyze.

• Electroencephalogram (EEG): Raw EEG signals suffer from poor spatial resolution,
low signal-to-noise ratio, and artifacts. Continuous wavelet decomposition of a noisy
signal concentrates intrinsic signal information in a few wavelet coefficients having
large absolute values without modifying the random distribution of noise. Therefore,
denoising can be achieved by thresholding the wavelet coefficients.

• Signal demodulation: Demodulate extended binary phase shift keying (EBPSK) using
an adaptive wavelet construction method.

• Deep learning: The CWT can be used to create time-frequency representations that
can be used to train a convolutional neural network. “Classify Time Series Using
Wavelet Analysis and Deep Learning” shows how to classify ECG signals using
scalograms and transfer learning.

How to Use

• cwt computes the continuous wavelet transform and displays the scalogram.
Alternatively, create a CWT filter bank using cwtfilterbank and apply the wt
function. Use this method to run in parallel applications or when computing the
transform for several functions in a loop.

• icwt inverts the continuous wavelet transform.
• Signal Analyzer has a scalogram view to visualize the CWT of multiple time series.

Example: ECG Signal

Load a noisy ECG waveform sampled at 360 Hz.

load ecg
Fs = 360;

Compute the continuous wavelet transform.
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cwt(ecg,Fs)

The ECG data is taken from the MIT-BIH Arrhythmia Database [2].

Wigner-Ville Distribution
Description

• The Wigner-Ville distribution (WVD) is a quadratic energy density computed by
correlating the signal with a time and frequency translated and complex-conjugated
version of itself.
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• The Wigner-Ville distribution is always real even if the signal is complex.
• The time- and frequency- integrals of the Wigner-Ville distribution correspond to the

signal's instantaneous power and spectral energy density.
• The instantaneous frequency and group delay can be evaluated using local first-order

moments of the Wigner distribution.
• The time resolution of the WVD is equal to the number of input samples.
• The Wigner distribution can locally assume negative values.

Potential Applications

The applications of this time-frequency method include, but are not limited to:

• Otoacoustic emissions (OAEs): OAEs are narrowband oscillatory signals emitted by the
cochlea (inner ear), and their presence is indicative of normal hearing.

• Quantum mechanics: Quantum corrections to classical statistical mechanics, model
electron transport, and calculate static and dynamic properties of many-body quantum
systems.

How to Use

• wvd computes the Wigner-Ville distribution.
• xwvd computes the cross Wigner-Ville distribution of two signals. See “Use Cross

Wigner-Ville Distribution to Estimate Instantaneous Frequency” for more details.

Example: Otoacoustic Emission

Load a data file containing otoacoustic emission data sampled at 20 kHz. The emission is
produced by a stimulus beginning at 25 milliseconds and ending at 175 milliseconds.

load dpoae
Fs = 20e3;

Compute the smoothed-pseudo Wigner Ville distribution of the otoacoustic data. The
convenience plot isolates the emission frequency at roughly the expected value 1.2 kHz.

wvd(dpoaets,Fs,'smoothedPseudo',kaiser(511,10),kaiser(511,10),'NumFrequencyPoints',4000,'NumTimePoints',3990)
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For more details on otoacoustic emissions, see "Determining Exact Frequency Through
the Analytic CWT" in “CWT-Based Time-Frequency Analysis”.

Reassignment and Synchrosqueezing
Description

• Reassignment sharpens the localization of spectral estimates and produces
spectrograms that are easier to read and interpret. The technique relocates each
spectral estimate to the center of energy of its bin instead of the bin's geometric
center. It provides exact localization for chirps and impulses.
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• The Fourier synchrosqueezed transform starts from the short-time Fourier transform
and "squeezes" its values so that they concentrate around curves of instantaneous
frequency in the time-frequency plane.

• The wavelet synchrosqueezed transform reassigns the signal energy in frequency.
• Both the Fourier synchrosqueezed transform and the wavelet synchrosqueezed

transform are invertible.
• The reassigned and synchrosqueezing methods are especially suited to track and

extract time-frequency ridges.

Potential Applications

The applications of this time-frequency method include, but are not limited to:

• Audio signal processing: Synchrosqueezing transform (SST) was originally introduced
in the context of audio signal analysis.

• Seismic data: Analysis of seismic data to find oil and gas traps. Synchrosqueezing can
also detect deep-layer weak signals that are usually smeared in seismic data.

• Oscillations in power systems: A steam turbine and electric generator can have
mechanical subsynchronous oscillation (SSO) modes between the various turbine
stages and the generator. The frequency of the SSO is generally between 5 Hz and 45
Hz, and the mode frequencies are often close to each other. The antinoise ability and
time-frequency resolution of WSST improves the readability of the time-frequency
view.

• Deep learning: Synchrosqueezed transforms can be used to extract time-frequency
features and fed into a network that classifies time-series data. “Waveform
Segmentation Using Deep Learning” (Signal Processing Toolbox) shows how fsst
outputs can be fed into an LSTM network that classifies ECG signals.

How to Use

• Use the 'reassigned' option in spectrogram, set the 'Reassigned' argument to
true in pspectrum, or check the Reassign box in the spectrogram view of Signal
Analyzer to compute reassigned spectrograms.

• fsst computes the Fourier synchrosqueezed transform. Use the ifsst function to
invert the Fourier synchrosqueezed transform. (See “Fourier Synchrosqueezed
Transform of Speech Signal” (Signal Processing Toolbox) for reconstruction of speech
signals using ifsst.)
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• wsst computes the wavelet synchrosqueezed transform. Use the iwsst function to
invert the wavelet synchrosqueezed transform. (See “Inverse Synchrosqueezed
Transform of Chirp” for reconstruction of a quadratic chirp using iwsst.)

Example: Echolocation Pulse

Load an echolocation pulse emitted by a big brown bat (Eptesicus Fuscus). The sampling
interval is 7 microseconds.

load batsignal
Fs = 1/DT;

Compute the reassigned spectrogram of the signal.

subplot(2,1,1)
pspectrum(batsignal,Fs,'spectrogram','TimeResolution',280e-6, ...
    'OverlapPercent',85,'MinThreshold',-45,'Leakage',0.9)
subplot(2,1,2)
pspectrum(batsignal,Fs,'spectrogram','TimeResolution',280e-6, ...
    'OverlapPercent',85,'MinThreshold',-45,'Leakage',0.9,'Reassign',true)
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Thanks to Curtis Condon, Ken White, and Al Feng of the Beckman Center at the
University of Illinois for the bat data and permission to use it in this example [3].

Example: Speech Signals

Load a file containing the word "strong," spoken by a woman and by a man. The signals
are sampled at 8 kHz. Concatenate them into a single signal.

load Strong
x = [her' him'];

Compute the synchrosqueezed Fourier transform of the signal. Window the signal using a
Kaiser window with shape factor β = 20.
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fsst(x,Fs,kaiser(256,20),'yaxis')

Example: Synthetic Seismic Data

Load the synthetic seismic data sampled at 100 Hz for 1 second.

load SyntheticSeismicData

Compute the wavelet synchrosqueezed transform of the seismic data using the bump
wavelet and 30 voices per octave.

wsst(x,Fs,'bump','VoicesPerOctave',30,'ExtendSignal',true)
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The seismic signal is generated using the two sinusoids mentioned in "Time-Frequency
Analysis of Seismic Data Using Synchrosqueezing Transform" by Ping Wang, Jinghuai
Gao, and Zhiguo Wang [4].

Example: Earthquake Vibration

Load acceleration measurements recorded on the first floor of a three story test structure
under earthquake conditions. The measurements are sampled at 1 kHz.

load quakevib
Fs = 1e3;
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Compute the wavelet synchrosqueezed transform of the acceleration measurements. You
are analyzing vibration data that exhibit a cyclic behavior. The synchrosqueezed
transform allows you to isolate the three frequency components, separated by roughly 11
Hz. The main vibration frequency is at 5.86 Hz, and the equispaced frequency peaks
suggest that they are harmonically related. The cyclic behavior of the vibrations is also
visible.

wsst(gfloor1OL,Fs,'bump','VoicesPerOctave',48)
ylim([0 35])
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Example: Kobe Earthquake Data

Load seismograph data recorded during the 1995 Kobe earthquake. The data has a
sample rate of 1 Hz.

load kobe
Fs = 1;

Compute the wavelet synchrosqueezed transform that isolates the different frequency
components of the seismic data.

wsst(kobe,Fs,'bump','VoicesPerOctave',48)
ylim([0 300])
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The data are seismograph (vertical acceleration, nm/sq.sec) measurements recorded at
Tasmania University, Hobart, Australia on 16 January 1995 beginning at 20:56:51 (GMT)
and continuing for 51 minutes at 1 second intervals [5].

Example: Subsynchronous Oscillation in Power Systems

Load the subsynchronous oscillation data of a Power System.

load OscillationData

Compute the wavelet synchrosqueezed transform using the bump wavelet and 48 voices
per octave. The four mode frequencies are at 15 Hz, 20 Hz, 25 Hz and 32 Hz. Notice that
the energies of the modes at 15 Hz and 20 Hz decrease with time, whereas the energy of
the modes at 25 Hz and 32 Hz increase gradually over time.

wsst(x,Fs,'bump','VoicesPerOctave',48)
ylim([10 50])
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This synthetic subsynchronous oscillation data was generated using the equation defined
by Zhao et al in "Application of Synchrosqueezed Wavelet Transforms for Extraction of
the Oscillatory Parameters of Subsynchronous Oscillation in Power Systems" [6].

Constant-Q Gabor Transform
Description

• The constant-Q nonstationary Gabor transform uses windows with different center
frequencies and bandwidths such that the ratio of center frequency to bandwidth, the
Q factor, remains constant.
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• The constant-Q Gabor transform enables the construction of stable inverses, yielding
perfect signal reconstruction.

• In frequency space, the windows are centered at logarithmically spaced center
frequencies.

Potential Applications

The applications of this time-frequency method include, but are not limited to:

Audio signal processing: The fundamental frequencies of the tones in music are
geometrically spaced. The frequency resolution of the human auditory system is
approximately constant-Q, making this technique appropriate for music signal processing.

How to Use

• cqt computes the constant-Q Gabor transform.
• icqt inverts the constant-Q Gabor transform.

Example: Rock Music

Load an audio file containing a fragment of Rock music with vocals, drums, and guitar.
The signal has a sample rate of 44.1 kHz.

load drums

Set the frequency range over which the CQT has a logarithmic frequency response to be
the minimum allowable frequency to 2 kHz. Perform the CQT of the signal using 20 bins
per octave.

minFreq = fs/length(audio);
maxFreq = 2000;
cqt(audio,'SamplingFrequency',fs,'BinsPerOctave',20,'FrequencyLimits',[minFreq maxFreq])
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Empirical Mode Decomposition and Hilbert-Huang Transform
Description

• The empirical mode decomposition decomposes the signals into intrinsic mode
functions which form a complete and nearly orthogonal basis for the original signal.

• The Hilbert-Huang transform computes the instantaneous frequency of each intrinsic
mode function.

• These two methods combined are useful for analyzing nonlinear and nonstationary
signals.
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Potential Applications

The applications of this time-frequency method include, but are not limited to:

• Physiological signal processing: Analyze human EEG response to transcranial
magnetic stimulation (TMS) of the brain cortex.

• Structural applications: Locate anomalies that appear as cracks, delamination, or
stiffness loss in beams and plates.

• System identification: Isolate modal damping ratios of structures with closely spaced
modal frequencies.

• Ocean engineering: Identify transient electromagnetic disturbances caused by humans
in underwater electromagnetic environments.

• Solar physics: Extract periodic components of sunspot data.
• Atmospheric turbulence: Observe stable boundary layer to separate turbulent and

nonturbulent motions.
• Epidemiology: Assess traveling speed of communicative diseases such as Dengue

fever.

How to Use

• emd computes the empirical mode decomposition.
• hht computes the Hilbert Huang spectrum of an empirical mode decomposition.

Example: Bearing Vibration

Load the vibration signal from a defective bearing generated in the “Compute Hilbert
Spectrum of Vibration Signal” (Signal Processing Toolbox) example. The signal is sampled
at a rate 10 kHz.

load bearingVibration

Compute the first five intrinsic mode functions (IMFs) of the signal. Plot the Hilbert
spectrum of the first and third empirical modes. The first mode reveals increasing wear
due to high-frequency impacts on the bearing's outer race. The third mode shows a
resonance occurring halfway through the measurement process that caused the defect in
the bearing.

imf = emd(y,'MaxNumIMF',5,'Display',0);
subplot(2,1,1)
hht(imf(:,1),fs)
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subplot(2,1,2)
hht(imf(:,3),fs,'FrequencyLimits',[0 100])
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About Wavelet Packet Analysis
Wavelet Toolbox software contains graphical tools and command line functions that let
you

• Examine and explore characteristics of individual wavelet packets
• Perform wavelet packet analysis of 1-D and 2-D data
• Use wavelet packets to compress and remove noise from signals and images

This chapter takes you step-by-step through examples that teach you how to use the
Wavelet Packet 1-D and Wavelet Packet 2-D graphical tools. The last section discusses
how to transfer information from the graphical tools into your disk, and back again.

Note All the graphical user interface tools described in this chapter let you import
information from and export information to either disk or workspace.

Because of the inherent complexity of packing and unpacking complete wavelet packet
decomposition tree structures, we recommend using the Wavelet Packet 1-D and
Wavelet Packet 2-D graphical tools for performing exploratory analyses.

The command line functions are also available and provide the same capabilities.
However, it is most efficient to use the command line only for performing batch
processing.

Note For more background on the wavelet packets, you can see the section “Wavelet
Packets” on page 5-32.

Some object-oriented programming features are used for wavelet packet tree structures.
For more detail, refer to “Introduction to Object-Oriented Features” on page 5-51.

This chapter takes you through the features of 1-D and 2-D wavelet packet analysis using
the Wavelet Toolbox software. You'll learn how to

• Load a signal or image
• Perform a wavelet packet analysis of a signal or image
• Compress a signal
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• Remove noise from a signal
• Compress an image
• Show statistics and histograms

The toolbox provides these functions for wavelet packet analysis. For more information,
see the reference pages. The reference entries for these functions include examples
showing how to perform wavelet packet analysis via the command line.

Some more advanced examples mixing command line and app functions can be found in
the section “Examples Using Wavelet Packet Tree Objects” on page 5-53.

Analysis-Decomposition Functions

Function Name Purpose
wpcoef Wavelet packet coefficients
wpdec and wpdec2 Full decomposition
wpsplt Decompose packet

Synthesis-Reconstruction Functions

Function Name Purpose
wprcoef Reconstruct coefficients
wprec and wprec2 Full reconstruction
wpjoin Recompose packet
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Decomposition Structure Utilities

Function Name Purpose
besttree Find best tree
bestlevt Find best level tree
entrupd Update wavelet packets entropy
get Get WPTREE object fields contents
read Read values in WPTREE object fields
wenergy Entropy
wp2wtree Extract wavelet tree from wavelet packet tree
wpcutree Cut wavelet packet tree

Denoising and Compression

Function Name Purpose
ddencmp Default values for denoising and compression
wpbmpen Penalized threshold for wavelet packet denoising
wpdencmp Denoising and compression using wavelet packets
wpthcoef Wavelet packets coefficients thresholding
wthrmngr Threshold settings manager

In the wavelet packet framework, compression and denoising ideas are exactly the same
as those developed in the wavelet framework. The only difference is that wavelet packets
offer a more complex and flexible analysis, because in wavelet packet analysis, the details
as well as the approximations are split.
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A single wavelet packet decomposition gives a lot of bases from which you can look for
the best representation with respect to a design objective. This can be done by finding the
“best tree” based on an entropy criterion.

Denoising and compression are interesting applications of wavelet packet analysis. The
wavelet packet denoising or compression procedure involves four steps:

1 Decomposition

For a given wavelet, compute the wavelet packet decomposition of signal x at level N.
2 Computation of the best tree

For a given entropy, compute the optimal wavelet packet tree. Of course, this step is
optional. The graphical tools provide a Best Tree button for making this computation
quick and easy.

3 Thresholding of wavelet packet coefficients

For each packet (except for the approximation), select a threshold and apply
thresholding to coefficients.

The graphical tools automatically provide an initial threshold based on balancing the
amount of compression and retained energy. This threshold is a reasonable first
approximation for most cases. However, in general you will have to refine your
threshold by trial and error so as to optimize the results to fit your particular analysis
and design criteria.

The tools facilitate experimentation with different thresholds, and make it easy to
alter the tradeoff between amount of compression and retained signal energy.

4 Reconstruction

Compute wavelet packet reconstruction based on the original approximation
coefficients at level N and the modified coefficients.

In this example, we'll show how you can use 1-D wavelet packet analysis to compress and
to denoise a signal.
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1-D Wavelet Packet Analysis

In this section...
“Starting the Wavelet Packet 1-D Tool” on page 5-6
“Importing a Signal” on page 5-7
“Analyzing a Signal” on page 5-7
“Computing the Best Tree” on page 5-9
“Compressing a Signal Using Wavelet Packets” on page 5-10
“De-Noising a Signal Using Wavelet Packets” on page 5-13

We now turn to the Wavelet Packet 1-D tool to analyze a synthetic signal that is the sum
of two linear chirps.

Starting the Wavelet Packet 1-D Tool
1 From the MATLAB prompt, type waveletAnalyzer. The Wavelet Analyzer appears.

Click the Wavelet Packet 1-D menu item.
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Importing a Signal
1 At the MATLAB command prompt, type

load sumlichr;
2 In the Wavelet Packets 1-D tool, select File > Import from Workspace > Import

Signal. When the Import from Workspace dialog box appears, select the
sumlichr variable. Click OK to import the data.

The sumlichr signal is loaded into the Wavelet Packet 1-D tool.

Analyzing a Signal
1 Make the appropriate settings for the analysis. Select the db2 wavelet, level 4,

entropy threshold, and for the threshold parameter type 1. Click the Analyze
button.
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The available entropy types are listed below.

Type Description
Shannon Nonnormalized entropy involving the logarithm of the

squared value of each signal sample — or, more formally,

−∑si
2log(si

2) .

Threshold The number of samples for which the absolute value of the
signal exceeds a threshold ε.

Norm The concentration in lp norm with 1 ≤ p.
Log Energy The logarithm of “energy,” defined as the sum over all

samples:

∑ log(si
2) .

SURE (Stein's Unbiased
Risk Estimate)

A threshold-based method in which the threshold equals

2loge nlog2(n)

where n is the number of samples in the signal.
User An entropy type criterion you define in a file.

For more information about the available entropy types, user-defined entropy, and
threshold parameters, see the wentropy reference page and “Choosing the Optimal
Decomposition” on page 5-42.
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Note Many capabilities are available using the command area on the right of the
Wavelet Packet 1-D window.

Computing the Best Tree
Because there are so many ways to reconstruct the original signal from the wavelet
packet decomposition tree, we select the best tree before attempting to compress the
signal.

1 Click the Best Tree button.

After a pause for computation, the Wavelet Packet 1-D tool displays the best tree.
Use the top and bottom sliders to spread nodes apart and pan over to particular
areas of the tree, respectively.

Observe that, for this analysis, the best tree and the initial tree are almost the same.
One branch at the far right of the tree was eliminated.
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Compressing a Signal Using Wavelet Packets
Selecting a Threshold for Compression

1 Click the Compress button.

The Wavelet Packet 1-D Compression window appears with an approximate
threshold value automatically selected.
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The leftmost graph shows how the threshold (vertical black dotted line) has been
chosen automatically (1.482) to balance the number of zeros in the compressed
signal (blue curve that increases as the threshold increases) with the amount of
energy retained in the compressed signal (purple curve that decreases as the
threshold increases).

This threshold means that any signal element whose value is less than 1.482 will be
set to zero when we perform the compression.

Threshold controls are located to the right (see the red box in the figure above). Note
that the automatic threshold of 1.482 results in a retained energy of only 81.49%.
This may cause unacceptable amounts of distortion, especially in the peak values of
the oscillating signal. Depending on your design criteria, you may want to choose a
threshold that retains more of the original signal's energy.

2 Adjust the threshold by typing 0.8938 in the text field opposite the threshold slider,
and then press the Enter key.

The value 0.8938 is a number that we have discovered through trial and error yields
more satisfactory results for this analysis.
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After a pause, the Wavelet Packet 1-D Compression window displays new
information.

Note that, as we have reduced the threshold from 1.482 to 0.8938,

• The vertical black dotted line has shifted to the left.
• The retained energy has increased from 81.49% to 90.96%.
• The number of zeros (equivalent to the amount of compression) has decreased

from 81.55% to 75.28%.

Compressing a Signal

1 Click the Compress button.

The Wavelet Packet 1-D tool compresses the signal using the thresholding criterion
we selected.

The original (red) and compressed () signals are displayed superimposed. Visual
inspection suggests the compression quality is quite good.

Looking more closely at the compressed signal, we can see that the number of zeros in
the wavelet packets representation of the compressed signal is about 75.3%, and the
retained energy about 91%.

If you try to compress the same signal using wavelets with exactly the same parameters,
only 89% of the signal energy is retained, and only 59% of the wavelet coefficients set to
zero. This illustrates the superiority of wavelet packets for performing compression, at
least on certain signals.
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You can demonstrate this to yourself by returning to the main Wavelet Packet 1-D
window, computing the wavelet tree, and then repeating the compression.

De-Noising a Signal Using Wavelet Packets
We now use the Wavelet Packet 1-D tool to analyze a noisy chirp signal. This analysis
illustrates the use of Stein's Unbiased Estimate of Risk (SURE) as a principle for selecting
a threshold to be used for de-noising.

This technique calls for setting the threshold T to

T = 2loge nlog2(n)

where n is the length of the signal.

A more thorough discussion of the SURE criterion appears in “Choosing the Optimal
Decomposition” on page 5-42. For now, suffice it to say that this method works well if
your signal is normalized in such a way that the data fit the model x(t) = f(t) + e(t), where
e(t) is a Gaussian white noise with zero mean and unit variance.

If you've already started the Wavelet Packet 1-D tool and it is active on your computer's
desktop, skip ahead to step 3.

Starting the Wavelet Packet 1–D Tool

1 From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.
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Click the Wavelet Packet 1-D menu item.

The tool appears on the desktop.

Importing a Signal
2 At the MATLAB command prompt, type

load noischir;
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In the Wavelet Packet 1-D tool, select File > Import from Workspace > Import
Signal. When the Import from Workspace dialog box appears, select the
sumlichr variable. Click OK to import the data

Note You can use File > Load > Signal to load a signal by navigating to its location.
3 The signal's length is 1024. This means we should set the SURE criterion threshold

equal to sqrt(2.*log(1024.*log2(1024))), or 4.2975.

Analyzing a Signal
4 Make the appropriate settings for the analysis. Select the db2 wavelet, level 4,

entropy type sure, and threshold parameter 4.2975. Click the Analyze button.

There is a pause while the wavelet packet analysis is computed.
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Note Many capabilities are available using the command area on the right of the
Wavelet Packet 1-D window. Some of them are used in the sequel. For a more
complete description, see “Wavelet Packet Tool Features (1-D and 2-D)” on page A-
14.

Computing the Best Tree and Performing De-Noising
5 Click the Best Tree button.

Computing the best tree makes the de-noising calculations more efficient.

6 Click the De-noise button. This brings up the Wavelet Packet 1-D De-Noising
window.
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7 Click the De-noise button located at the center right side of the Wavelet Packet 1-
D De-Noising window.

The results of the de-noising operation are quite good, as can be seen by looking at the
thresholded coefficients. The frequency of the chirp signal increases quadratically over
time, and the thresholded coefficients essentially capture the quadratic curve in the time-
frequency plane.
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You can also use the wpdencmp function to perform wavelet packet de-noising or
compression from the command line.
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2-D Wavelet Packet Analysis
In this section...
“Starting the Wavelet Packet 2-D Tool” on page 5-19
“Compressing an Image Using Wavelet Packets” on page 5-21

In this section, we employ the Wavelet Packet 2-D tool to analyze and compress an
image of a fingerprint. This is a real-world problem: the Federal Bureau of Investigation
(FBI) maintains a large database of fingerprints — about 30 million sets of them. The cost
of storing all this data runs to hundreds of millions of dollars.

“The FBI uses eight bits per pixel to define the shade of gray and stores 500 pixels per
inch, which works out to about 700,000 pixels and 0.7 megabytes per finger to store
finger prints in electronic form.” (Wickerhauser, see the reference [Wic94] p. 387, listed
in “References”).

“The technique involves a 2-D DWT, uniform scalar quantization (a process that truncates,
or quantizes, the precision of the floating-point DWT output) and Huffman entropy coding
(i.e., encoding the quantized DWT output with a minimal number of bits).” (Brislawn, see
the reference [Bris95] p. 1278, listed in “References”).

By turning to wavelets, the FBI has achieved a 15:1 compression ratio. In this application,
wavelet compression is better than the more traditional JPEG compression, as it avoids
small square artifacts and is particularly well suited to detect discontinuities (lines) in the
fingerprint.

Note that the international standard JPEG 2000 will include the wavelets as a part of the
compression and quantization process. This points out the present strength of the
wavelets.

Starting the Wavelet Packet 2-D Tool
1 From the MATLAB prompt, type waveletAnalyzer. The Wavelet Analyzer appears.
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Click the Wavelet Packet 2-D menu item.

Importing an Image

At the MATLAB command prompt, type

load detfingr;

In the Wavelet Packet 2-D tool, select File > Import from Workspace > Import
Image. When the Import from Workspace dialog box appears, select the X
variable. Click OK to import the fingerprint image.

Analyzing an Image
2 Make the appropriate settings for the analysis. Select the haar wavelet, level 3, and

entropy type shannon. Click the Analyze button.
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Note Many capabilities are available using the command area on the right of the
Wavelet Packet 2-D window.

3 Click the Best Tree button to compute the best tree before compressing the image.

Compressing an Image Using Wavelet Packets
1 Click the Compress button to bring up the Wavelet Packet 2-D Compression

window. Select the Bal. sparsity-norm (sqrt) option from the Select thresholding
method menu.

Notice that the default threshold (7.125) provides about 64% compression while
retaining virtually all the energy of the original image. Depending on your criteria, it
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may be worthwhile experimenting with more aggressive thresholds to achieve a
higher degree of compression. Recall that we are not doing any quantization of the
image, merely setting specific coefficients to zero. This can be considered a
precompression step in a broader compression system.

2 Alter the threshold: type the number 30 in the text field opposite the threshold slider
located on the right side of the Wavelet Packet 2-D Compression window. Then
press the Enter key.

Setting all wavelet packet coefficients whose value falls below 30 to zero yields much
better results. Note that the new threshold achieves around 92% of zeros, while still
retaining nearly 98% of the image energy.

3 Click the Compress button to start the compression.

You can see the result obtained by wavelet packet coefficients thresholding and
image reconstruction. The visual recovery is correct, but not perfect. The compressed
image, shown side by side with the original, shows some artifacts.
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4 Click the Close button located at the bottom of the Wavelet Packet 2-D
Compression window. Update the synthesized image by clicking Yes when the dialog
box appears.

Take this opportunity to try out your own compression strategy. Adjust the threshold
value, the entropy function, and the wavelet, and see if you can obtain better results.

Hint The bior6.8 wavelet is better suited to this analysis than is haar, and can lead to
a better compression ratio. When a biorthogonal wavelet is used, then instead of
“Retained energy” the information displayed is “Energy ratio.” For more information, see
“Compression Scores” on page 6-82.

Before concluding this analysis, it is worth turning our attention to the “colored
coefficients for terminal nodes plot” and considering the best tree decomposition for this
image.
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This plot is shown in the lower right side of the Wavelet Packet 2-D tool. The plot shows
us which details have been decomposed and which have not. Larger squares represent
details that have not been broken down to as many levels as smaller squares. Consider,
for example, this level 2 decomposition pattern:

Looking at the pattern of small and large squares in the fingerprint analysis shows that
the best tree algorithm has apparently singled out the diagonal details, often sparing
these from further decomposition. Why is this?

If we consider the original image, we realize that much of its information is concentrated
in the sharp edges that constitute the fingerprint's pattern. Looking at these edges, we
see that they are predominantly oriented horizontally and vertically. This explains why the
best tree algorithm has “chosen” not to decompose the diagonal details — they do not
provide very much information.
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Importing and Exporting from Wavelet Analyzer App
The Wavelet Packet 1-D and Wavelet Packet 2-D tools let you import information from
and export information to your disk.

If you adhere to the proper file formats, you can

• Save decompositions as well as synthesized signals and images from the wavelet
packet graphical tools to disk

• Load signals, images, and 1-D and 2-D decompositions from disk into the Wavelet
Packet 1-D and Wavelet Packet 2-D graphical tools

Saving Information to Disk
Using specific file formats, the graphical tools let you save synthesized signals or images,
as well as 1-D or 2-D wavelet packet decomposition structures. This feature provides
flexibility and allows you to combine command line and graphical interface operations.

Saving Synthesized Signals

You can process a signal in the Wavelet Packet 1-D tool, and then save the processed
signal to a MAT-file.

For example, load the example analysis:

File > Example Analysis > db1 – depth: 2 – ent: shannon > sumsin

and perform a compression or denoising operation on the original signal. When you close
the Wavelet Packet 1-D Denoising or Wavelet Packet 1-D Compression window,
update the synthesized signal by clicking Yes in the dialog box.

Then, from the Wavelet Packet 1-D tool, select the File > Save > Synthesized Signal
menu option.

A dialog box appears allowing you to select a folder and filename for the MAT-file. For this
example, choose the name synthsig.

To load the signal into your workspace, simply type

load synthsig
whos
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Name Size Bytes Class
synthsig 1x1000 8000 double array
valTHR 1x1 8 double array
wname 1x3 6 char array

The synthesized signal is given by synthsig. In addition, the parameters of the denoising
or compression process are given by the wavelet name (wname) and the global threshold
(valTHR).

valTHR

valTHR =
    1.9961

Saving Synthesized Images

You can process an image in the Wavelet Packet 2-D tool, and then save the processed
image to a MAT-file (with extension mat or other).

For example, load the example analysis:

File > Example Analysis > db1 – depth: 1 – ent: shannon > woman

and perform a compression on the original image. When you close the Wavelet Packet 2-
D Compression window, update the synthesized image by clicking Yes in the dialog box
that appears.

Then, from the Wavelet 2-D tool, select the File > Save > Synthesized Image menu
option.

A dialog box appears allowing you to select a folder and filename for the MAT-file. For this
example, choose the name wpsymage.

To load the image into your workspace, simply type

load wpsymage
whos

Name Size Bytes Class
X 256x256 524288 double array
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Name Size Bytes Class
map 255x3 6120 double array
valTHR 1x1 8 double array
wname 1x3 6 char array

The synthesized image is given by X. The variable map contains the associated colormap.
In addition, the parameters of the denoising or compression process are given by the
wavelet name (wname) and the global threshold (valTHR).

Saving 1-D Decomposition Structures

The Wavelet Packet 1-D tool lets you save an entire wavelet packet decomposition tree
and related data to your disk. The toolbox creates a MAT-file in the current folder with a
name you choose, followed by the extension wp1 (wavelet packet 1-D).

Open the Wavelet Packet 1-D tool and load the example analysis:

File > Example Analysis > db1 – depth: 2 – ent: shannon > sumsin

To save the data from this analysis, use the menu option File > Save Decomposition.

A dialog box appears that lets you specify a folder and file name for storing the
decomposition data. Type the name wpdecex1d.

After saving the decomposition data to the file wpdecex1d.wp1, load the variables into
your workspace.

load wpdecex1d.wp1 -mat
whos 

Name Size Bytes Class
data_name 1x6 12 char array
tree_struct 1x1 11176 wptree object
valTHR 0x0 0 double array

The variable tree_struct contains the wavelet packet tree structure. The variable
data_name contains the data name and valTHR contains the global threshold, which is
currently empty since the synthesized signal does not exist.
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Saving 2-D Decomposition Structures

The file format, variables, and conventions are exactly the same as in the 1-D case except
for the extension, which is wp2 (wavelet packet 2-D). The variables saved are the same as
with the 1-D case, with the addition of the colormap matrix map:

Name Size Bytes Class
data_name 1x5 10 char array
map 255x3 6120 double array
tree_struct 1x1 527400 wptree object
valTHR 1x1 8 double array

Save options are also available when performing denoising or compression inside the
Wavelet Packet 1-D and Wavelet Packet 2-D tools.

In the Wavelet Packet Denoising windows, you can save the denoised signal or image and
the decomposition. The same holds true for the Wavelet Packet Compression windows.

This way, you can save directly many different trials from inside the Denoising and
Compression windows without going back to the main Wavelet Packet windows during a
fine-tuning process.

Note When saving a synthesized signal (1-D), a synthesized image (2-D) or a
decomposition to a MAT-file, the extension of this file is free. The mat extension is not
necessary.

Loading Information into the Graphical Tools
You can load signals, images, or 1-D and 2-D wavelet packet decompositions into the
graphical interface tools. The information you load may have been previously exported
from the graphical interface, and then manipulated in the workspace, or it may have been
information you generated initially from the command line.

In either case, you must observe the strict file formats and data structures used by the
graphical tools, or else errors will result when you try to load information.
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Loading Signals

To load a signal you've constructed in your MATLAB workspace into the Wavelet Packet
1-D tool, save the signal in a MAT-file (with extension mat or other).

For instance, suppose you've designed a signal called warma and want to analyze it in the
Wavelet Packet 1-D tool.

save warma warma

The workspace variable warma must be a vector.

sizwarma = size(warma)

sizwarma =
           1        1000

To load this signal into the Wavelet Packet 1-D tool, use the menu option File > Load
Signal.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Note The first 1-D variable encountered in the file is considered the signal. Variables are
inspected in alphabetical order.

Loading Images

This toolbox supports only indexed images. An indexed image is a matrix containing only
integers from 1 to n, where n is the number of colors in the image.

This image may optionally be accompanied by a n-by-3 matrix called map. This is the
colormap associated with the image. When MATLAB displays such an image, it uses the
values of the matrix to look up the desired color in this colormap. If the colormap is not
given, the Wavelet Packet 2-D graphical tool uses a monotonic colormap with
max(max(X))–min(min(X))+1 colors.

To load an image you've constructed in your MATLAB workspace into the Wavelet
Packet 2-D tool, save the image (and optionally, the variable map) in a MAT-file (with
extension mat or other).

For instance, suppose you've created an image called brain and want to analyze it in the
Wavelet Packet 2-D tool. Type
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X = brain;
map = pink(256);
save myfile X map

To load this image into the Wavelet Packet 2-D tool, use the menu option File > Load
Image.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Note The first 2-D variable encountered in the file (except the variable map, which is
reserved for the colormap) is considered the image. Variables are inspected in
alphabetical order.

Caution The graphical tools allow you to load an image that does not contain integers
from 1 to n. The computations will be correct since they act directly on the matrix, but the
display of the image will be strange. The values less than 1 will be evaluated as 1, the
values greater than n will be evaluated as n, and a real value within the interval [1,n]
will be evaluated as the closest integer.

Note that the coefficients, approximations, and details produced by wavelet packets
decomposition are not indexed image matrices. To display these images in a suitable way,
the Wavelet Packet 2-D tool follows these rules:

• Reconstructed approximations are displayed using the colormap map. The same holds
for the result of the reconstruction of selected nodes.

• The coefficients and the reconstructed details are displayed using the colormap map
applied to a rescaled version of the matrices.

Loading Wavelet Packet Decomposition Structures

You can load 1-D and 2-D wavelet packet decompositions into the graphical tools
providing you have previously saved the decomposition data in a MAT-file of the
appropriate format.

While it is possible to edit data originally created using the graphical tools and then
exported, you must be careful about doing so. Wavelet packet data structures are
complex, and the graphical tools do not do any consistency checking. This can lead to
errors if you try to load improperly formatted data.

1-D data file contains the following variables:
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Variable Status Description
tree_struct Required Object specifying the tree structure
data_name Optional Character vector specifying the name of the

decomposition
valTHR Optional Global threshold (can be empty if neither compression

nor denoising has been done)

These variables must be saved in a MAT-file (with extension wp1 or other).

2-D data file contains the following variables:

Variable Status Description
tree_struct Required Object specifying the tree structure
data_name Optional Character vector specifying the name of the

decomposition
map Optional Image map
valTHR Optional Global threshold (can be empty if neither compression

nor denoising has been done)

These variables must be saved in a MAT-file (with extension wp2 or other).

To load the properly formatted data, use the menu option File > Load Decomposition
Structure from the appropriate tool, and then select the desired MAT-file from the dialog
box that appears.

The Wavelet Packet 1-D or 2-D graphical tool then automatically updates its display to
show the new analysis.

Note When loading a signal (1-D), an image (2-D), or a decomposition (1-D or 2-D) from a
MAT-file, the extension of this file is free. The mat extension is not necessary.
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Wavelet Packets
In this section...
“From Wavelets to Wavelet Packets” on page 5-32
“Wavelet Packets in Action: An Introduction” on page 5-33
“Building Wavelet Packets” on page 5-36
“Wavelet Packet Atoms” on page 5-39
“Organizing the Wavelet Packets” on page 5-40
“Choosing the Optimal Decomposition” on page 5-42
“Some Interesting Subtrees” on page 5-46
“Wavelet Packets 2-D Decomposition Structure” on page 5-50
“Wavelet Packets for Compression and Denoising” on page 5-50

The wavelet packet method is a generalization of wavelet decomposition that offers a
richer signal analysis.

Wavelet packet atoms are waveforms indexed by three naturally interpreted parameters:
position, scale (as in wavelet decomposition), and frequency.

For a given orthogonal wavelet function, we generate a library of bases called wavelet
packet bases. Each of these bases offers a particular way of coding signals, preserving
global energy, and reconstructing exact features. The wavelet packets can be used for
numerous expansions of a given signal. We then select the most suitable decomposition of
a given signal with respect to an entropy-based criterion.

There exist simple and efficient algorithms for both wavelet packet decomposition and
optimal decomposition selection. We can then produce adaptive filtering algorithms with
direct applications in optimal signal coding and data compression.

From Wavelets to Wavelet Packets
In the orthogonal wavelet decomposition procedure, the generic step splits the
approximation coefficients into two parts. After splitting we obtain a vector of
approximation coefficients and a vector of detail coefficients, both at a coarser scale. The
information lost between two successive approximations is captured in the detail
coefficients. Then the next step consists of splitting the new approximation coefficient
vector; successive details are never reanalyzed.
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In the corresponding wavelet packet situation, each detail coefficient vector is also
decomposed into two parts using the same approach as in approximation vector splitting.
This offers the richest analysis: the complete binary tree is produced as shown in the
following figure.

Wavelet Packet Decomposition Tree at Level 3

The idea of this decomposition is to start from a scale-oriented decomposition, and then to
analyze the obtained signals on frequency subbands.

Wavelet Packets in Action: An Introduction
The following simple examples illustrate certain differences between wavelet analysis and
wavelet packet analysis.

Wavelet Packet Spectrum

The spectral analysis of wide-sense stationary signals using the Fourier transform is well-
established. For nonstationary signals, there exist local Fourier methods such as the
short-time Fourier transform (STFT). See “Short-Time Fourier Transform” for a brief
description.

Because wavelets are localized in time and frequency, it is possible to use wavelet-based
counterparts to the STFT for the time-frequency analysis of nonstationary signals. For
example, it is possible to construct the scalogram (wscalogram) based on the continuous
wavelet transform (CWT). However, a potential drawback of using the CWT is that it is
computationally expensive.

The discrete wavelet transform (DWT) permits a time-frequency decomposition of the
input signal, but the degree of frequency resolution in the DWT is typically considered too
coarse for practical time-frequency analysis.

 Wavelet Packets

5-33



As a compromise between the DWT- and CWT-based techniques, wavelet packets provide
a computationally-efficient alternative with sufficient frequency resolution. You can use
wpspectrum to perform a time-frequency analysis of your signal using wavelet packets.

The following examples illustrate the use of wavelet packets to perform a local spectral
analysis. The following examples also use spectrogram from the Signal Processing
Toolbox software as a benchmark to compare against the wavelet packet spectrum. If you
do not have the Signal Processing Toolbox software, you can simply run the wavelet
packet spectrum examples.

Wavelet packet spectrum of a sine wave.

fs = 1000; % sampling rate
t = 0:1/fs:2; % 2 secs at 1kHz sample rate
y = sin(256*pi*t); % sine of period 128
level = 6;
wpt = wpdec(y,level,'sym8');
[Spec,Time,Freq] = wpspectrum(wpt,fs,'plot');

If you have the Signal Processing Toolbox software, you can compute the short-time
Fourier transform.

figure;
windowsize = 128;
window = hanning(windowsize);
nfft = windowsize;
noverlap = windowsize-1;
[S,F,T] = spectrogram(y,window,noverlap,nfft,fs);
imagesc(T,F,log10(abs(S)))
set(gca,'YDir','Normal')
xlabel('Time (secs)')
ylabel('Freq (Hz)')
title('Short-time Fourier Transform spectrum')

Sum of two sine waves with frequencies of 64 and 128 hertz.

fs = 1000;
t = 0:1/fs:2;
y = sin(128*pi*t) + sin(256*pi*t); % sine of periods 64 and 128.
level = 6;
wpt = wpdec(y,level,'sym8');
[Spec,Time,Freq] = wpspectrum(wpt,fs,'plot');

If you have the Signal Processing Toolbox software, you can compute the short-time
Fourier transform.
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figure;
windowsize = 128;
window = hanning(windowsize);
nfft = windowsize;
noverlap = windowsize-1;
[S,F,T] = spectrogram(y,window,noverlap,nfft,fs);
imagesc(T,F,log10(abs(S)))
set(gca,'YDir','Normal')
xlabel('Time (secs)')
ylabel('Freq (Hz)')
title('Short-time Fourier Transform spectrum')

Signal with an abrupt change in frequency from 16 to 64 hertz at two seconds.

fs = 500;
t = 0:1/fs:4;
y = sin(32*pi*t).*(t<2) + sin(128*pi*t).*(t>=2);
level = 6;
wpt = wpdec(y,level,'sym8');
[Spec,Time,Freq] = wpspectrum(wpt,fs,'plot');

If you have the Signal Processing Toolbox software, you can compute the short-time
Fourier transform.

figure;
windowsize = 128;
window = hanning(windowsize);
nfft = windowsize;
noverlap = windowsize-1;
[S,F,T] = spectrogram(y,window,noverlap,nfft,fs);
imagesc(T,F,log10(abs(S)))
set(gca,'YDir','Normal')
xlabel('Time (secs)')
ylabel('Freq (Hz)')
title('Short-time Fourier Transform spectrum')

Wavelet packet spectrum of a linear chirp.

fs = 1000;
t = 0:1/fs:2;
y = sin(256*pi*t.^2);
level = 6;
wpt = wpdec(y,level,'sym8');
[Spec,Time,Freq] = wpspectrum(wpt,fs,'plot');

 Wavelet Packets

5-35



If you have the Signal Processing Toolbox software, you can compute the short-time
Fourier transform.

figure;
windowsize = 128;
window = hanning(windowsize);
nfft = windowsize;
noverlap = windowsize-1;
[S,F,T] = spectrogram(y,window,noverlap,nfft,fs);
imagesc(T,F,log10(abs(S)))
set(gca,'YDir','Normal')
xlabel('Time (secs)')
ylabel('Freq (Hz)')
title('Short-time Fourier Transform spectrum')

Wavelet packet spectrum of quadratic chirp.

y = wnoise('quadchirp',10);
len = length(y);
t = linspace(0,5,len);
fs = 1/t(2);
level = 6;
wpt = wpdec(y,level,'sym8');
[Spec,Time,Freq] = wpspectrum(wpt,fs,'plot');

If you have the Signal Processing Toolbox software, you can compute the short-time
Fourier transform.

windowsize = 128;
window = hanning(windowsize);
nfft = windowsize;
noverlap = windowsize-1;
imagesc(T,F,log10(abs(S)))
set(gca,'YDir','Normal')
xlabel('Time (secs)')
ylabel('Freq (Hz)')
title('Short-time Fourier Transform spectrum')

Building Wavelet Packets
The computation scheme for wavelet packets generation is easy when using an
orthogonal wavelet. We start with the two filters of length 2N, where h(n) and g(n),
correspond to the wavelet.
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Now by induction let us define the following sequence of functions:

(Wn(x), n = 0, 1, 2, ...)

by

W2n(x) = 2 ∑
k = 0

2N − 1
h(k)Wn(2x− k)

W2n + 1(x) = 2 ∑
k = 0

2N − 1
g(k)Wn(2x− k)

where W0(x) = φ(x) is the scaling function and W1(x) = ψ(x) is the wavelet function.

For example for the Haar wavelet we have

N = 1, h(0) = h(1) = 1
2

and

g(0) = − g(1) = 1
2

The equations become

W2n(x) = Wn(2x) + Wn(2x− 1)

and

W2n + 1(x) = Wn(2x) −Wn(2x− 1)

W0(x) = φ(x) is the Haar scaling function and W1(x) = ψ(x) is the Haar wavelet, both
supported in [0, 1]. Then we can obtain W2n by adding two 1/2-scaled versions of Wn with
distinct supports [0,1/2] and [1/2,1] and obtain W2n+1 by subtracting the same versions of
Wn.

For n = 0 to 7, we have the W-functions shown in the figure “Haar Wavelet Packets” on
page 5-38.
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Haar Wavelet Packets

This can be obtained using the following command:

[wfun,xgrid] = wpfun('db1',7,5);

which returns in wfun the approximate values of Wn for n = 0 to 7, computed on a 1/25

grid of the support xgrid.

Starting from more regular original wavelets and using a similar construction, we obtain
smoothed versions of this system of W-functions, all with support in the interval [0, 2N–1].
The figure “db2 Wavelet Packets” on page 5-39 presents the system of W-functions for
the original db2 wavelet.
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db2 Wavelet Packets

Wavelet Packet Atoms
Starting from the functions (Wn(x), n ∈ N) and following the same line leading to
orthogonal wavelets, we consider the three-indexed family of analyzing functions (the
waveforms):

(W j, n, k(x) = 2− j/2Wn(2− jx− k)

where n∊N and (j,k)∊Z2.

As in the wavelet framework, k can be interpreted as a time-localization parameter and j
as a scale parameter. So what is the interpretation of n?
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The basic idea of the wavelet packets is that for fixed values of j and k, Wj,n,k analyzes the
fluctuations of the signal roughly around the position 2j· k, at the scale 2j and at various
frequencies for the different admissible values of the last parameter n.

In fact, examining carefully the wavelet packets displayed in “Haar Wavelet Packets” on
page 5-38 and “db2 Wavelet Packets” on page 5-39, the naturally ordered Wn for n = 0,
1, ..., 7, does not match exactly the order defined by the number of oscillations. More
precisely, counting the number of zero crossings (up-crossings and down-crossings) for
the db1 wavelet packets, we have the following.

Natural order n 0 1 2 3 4 5 6 7
Number of zero crossings
for db1 Wn

2 3 5 4 9 8 6 7

So, to restore the property that the main frequency increases monotonically with the
order, it is convenient to define the frequency order obtained from the natural one
recursively.

Natural order n 0 1 2 3 4 5 6 7
Frequency order r(n) 0 1 3 2 6 7 5 4

As can be seen in the previous figures, Wr(n)(x) “oscillates” approximately n times.

To analyze a signal (the chirp of Example 2 for instance), it is better to plot the wavelet
packet coefficients following the frequency order from the low frequencies at the bottom
to the high frequencies at the top, rather than naturally ordered coefficients.

When plotting the coefficients, the various options related to the “Frequency” or
“Natural” order choice are available using the Wavelet Analyzer app.

These options are also available from command-line mode when using the wpviewcf
function.

Organizing the Wavelet Packets
The set of functions Wj,n = (Wj,n,k(x),k∊Z) is the (j,n) wavelet packet. For positive
values of integers j and n, wavelet packets are organized in trees. The tree in the figure
“Wavelet Packets Organized in a Tree; Scale j Defines Depth and Frequency n Defines
Position in the Tree” on page 5-41 is created to give a maximum level decomposition
equal to 3. For each scale j, the possible values of parameter n are 0, 1, ..., 2j–1.
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Wavelet Packets Organized in a Tree; Scale j Defines Depth and Frequency n
Defines Position in the Tree

The notation Wj,n, where j denotes scale parameter and n the frequency parameter, is
consistent with the usual depth-position tree labeling.

We have W0, 0 = (ϕ(x− k), k ∈ Z), and W1, 1 = (ψ( x
2 − k), k ∈ Z).

It turns out that the library of wavelet packet bases contains the wavelet basis and also
several other bases. Let us have a look at some of those bases. More precisely, let V0
denote the space (spanned by the family W0,0) in which the signal to be analyzed lies; then
(Wd,1; d ≥ 1) is an orthogonal basis of V0.

For every strictly positive integer D, (WD,0, (Wd,1; 1 ≤ d ≤ D)) is an orthogonal basis of V0.

We also know that the family of functions {(Wj+1,2n), (Wj+1,2n+1)} is an orthogonal basis of
the space spanned by Wj,n, which is split into two subspaces: Wj+1,2n spans the first
subspace, and Wj+1,2n+1 the second one.

This last property gives a precise interpretation of splitting in the wavelet packet
organization tree, because all the developed nodes are of the form shown in the figure
“Wavelet Packet Tree: Split and Merge” on page 5-42.
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Wavelet Packet Tree: Split and Merge

It follows that the leaves of every connected binary subtree of the complete tree
correspond to an orthogonal basis of the initial space.

For a finite energy signal belonging to V0, any wavelet packet basis will provide exact
reconstruction and offer a specific way of coding the signal, using information allocation
in frequency scale subbands.

Choosing the Optimal Decomposition
Based on the organization of the wavelet packet library, it is natural to count the
decompositions issued from a given orthogonal wavelet.

A signal of length N = 2L can be expanded in α different ways, where α is the number of
binary subtrees of a complete binary tree of depth L. As a result, α ≥ 2N/2 (see [Mal98]
page 323).

As this number may be very large, and since explicit enumeration is generally
unmanageable, it is interesting to find an optimal decomposition with respect to a
convenient criterion, computable by an efficient algorithm. We are looking for a minimum
of the criterion.

Functions verifying an additivity-type property are well suited for efficient searching of
binary-tree structures and the fundamental splitting. Classical entropy-based criteria
match these conditions and describe information-related properties for an accurate
representation of a given signal. Entropy is a common concept in many fields, mainly in
signal processing. Let us list four different entropy criteria (see [CoiW92]); many others
are available and can be easily integrated (type help wentropy). In the following
expressions s is the signal and (si) are the coefficients of s in an orthonormal basis.

The entropy E must be an additive cost function such that E(0) = 0 and

E(s) = ∑iE(si)
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• The (nonnormalized) Shannon entropy

E1(si) = − si
2log(si

2)

so

E1(s) = − ∑isi
2log(si

2)

with the convention 0log(0) = 0.
• The concentration in lp norm with 1 ℜ ≤ p

E2(si) = si
p

so

E2(s) = ∑i si
p = s p

p

• The logarithm of the “energy” entropy

E3(si) = log(si
2)

so

E3(s) = ∑i log(si
2)

with the convention log(0) = 0.
• The threshold entropy

E4(si) = 1 if si > ε and 0 elsewhere, so E4(s) = # {i such that si > ε} is the number
of time instants when the signal is greater than a threshold ε.

These entropy functions are available using the wentropy file.

Example 1: Compute Various Entropies

1 Generate a signal of energy equal to 1.

s = ones(1,16)*0.25;
2 Compute the Shannon entropy of s.
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e1 = wentropy(s,'shannon')
    e1 = 2.7726

3 Compute the l1.5 entropy of s, equivalent to norm(s,1.5)1.5.

e2 = wentropy(s,'norm',1.5)
    e2 = 2

4 Compute the “log energy” entropy of s.

e3 = wentropy(s,'log energy')
    e3 = -44.3614

5 Compute the threshold entropy of s using a threshold value of 0.24.

e4 = wentropy(s,'threshold', 0.24)
    e4 = 16

Example 2: Minimum-Entropy Decomposition

This simple example illustrates the use of entropy to determine whether a new splitting is
of interest to obtain a minimum-entropy decomposition.

1 We start with a constant original signal. Two pieces of information are sufficient to
define and to recover the signal (i.e., length and constant value).

w00 = ones(1,16)*0.25;
2 Compute entropy of original signal.

e00 = wentropy(w00,'shannon')
    e00 = 2.7726

3 Then split w00 using the haar wavelet.

[w10,w11] = dwt(w00,'db1');
4 Compute entropy of approximation at level 1.

e10 = wentropy(w10,'shannon')
    e10 = 2.0794

The detail of level 1, w11, is zero; the entropy e11 is zero. Due to the additivity
property the entropy of decomposition is given by e10+e11=2.0794. This has to be
compared to the initial entropy e00=2.7726. We have e10 + e11 < e00, so the
splitting is interesting.

5 Now split w10 (not w11 because the splitting of a null vector is without interest since
the entropy is zero).
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[w20,w21] = dwt(w10,'db1');
6 We have w20=0.5*ones(1,4) and w21 is zero. The entropy of the approximation

level 2 is

e20 = wentropy(w20,'shannon')
    e20 = 1.3863

Again we have e20 + 0 < e10, so splitting makes the entropy decrease.
7 Then

[w30,w31] = dwt(w20,'db1');
e30 = wentropy(w30,'shannon')
    e30 = 0.6931

[w40,w41] = dwt(w30,'db1')
    w40 = 1.0000
    w41 = 0

e40 = wentropy(w40,'shannon')
    e40 = 0

In the last splitting operation we find that only one piece of information is needed to
reconstruct the original signal. The wavelet basis at level 4 is a best basis according
to Shannon entropy (with null optimal entropy since e40+e41+e31+e21+e11 = 0).

8 Perform wavelet packets decomposition of the signal s defined in example 1.

t = wpdec(s,4,'haar','shannon');

The wavelet packet tree in “Entropy Values” on page 5-46 shows the nodes labeled
with original entropy numbers.
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Entropy Values
9 Compute the best tree.

bt = besttree(t);

The best tree is shown in the following figure. In this case, the best tree corresponds
to the wavelet tree. The nodes are labeled with optimal entropy.

Optimal Entropy Values

Some Interesting Subtrees
Using wavelet packets requires tree-related actions and labeling. The implementation of
the user interface is built around this consideration. For more information on the
technical details, see the reference pages.
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The complete binary tree of depth D corresponding to a wavelet packet decomposition
tree developed at level D is denoted by WPT.

We have the following interesting subtrees.

Decomposition Tree Subtree Such That the Set of Leaves Is a Basis
Wavelet packets decomposition tree Complete binary tree: WPT of depth D
Wavelet packets optimal decomposition
tree

Binary subtree of WPT

Wavelet packets best-level tree Complete binary subtree of WPT
Wavelet decomposition tree Left unilateral binary subtree of WPT of depth D
Wavelet best-basis tree Left unilateral binary subtree of WPT

We deduce the following definitions of optimal decompositions, with respect to an entropy
criterion E.

Decompositions Optimal Decomposition Best-Level Decomposition
Wavelet packet decompositions Search among 2D trees Search among D trees
Wavelet decompositions Search among D trees Search among D trees

For any nonterminal node, we use the following basic step to find the optimal subtree
with respect to a given entropy criterion E (where Eopt denotes the optimal entropy
value).

Entropy Condition Action on Tree and on Entropy Labeling
E(node) ≤ ∑

c child of node
Eopt(c)

If (node≠root), merge and set Eopt(node) = E(node)
E(node) > ∑

c child of node
Eopt(c) Split and set Eopt(node) = ∑

c child of node
Eopt(c)

with the natural initial condition on the reference tree, Eopt(t) = E(t) for each terminal
node t.

Reconstructing a Signal Approximation from a Node

You can use the function wprcoef to reconstruct an approximation to your signal from
any node in the wavelet packet tree. This is true irrespective of whether you are working
with a full wavelet packet tree, or a subtree determined by an optimality criterion. Use
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wpcoef if you want to extract the wavelet packet coefficients from a node without
reconstructing an approximation to the signal.

Load the noisy Doppler signal.

load noisdopp

Compute the wavelet packet decomposition down to level 5 using the sym4 wavelet. Use
the periodization mode.

dwtmode('per');
T = wpdec(noisdopp,5,'sym4');
plot(T)

Plot the binary wavelet packet tree and click on the (4,1) doublet (node 16).

Extract the wavelet packet coefficients from node 16.

wpc = wpcoef(T,16);
% wpc is length 64

Obtain an approximation to the signal from node 16.

rwpc = wprcoef(T,16);
% rwpc is length 1024
plot(noisdopp,'k'); hold on;
plot(rwpc,'b','linewidth',2);
axis tight;
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Determine the optimum binary wavelet packet tree.

Topt = besttree(T);
% plot the best tree
plot(Topt)

Reconstruct an approximation to the signal from the (3,0) doublet (node 7).

rsig = wprcoef(Topt,7);
% rsig is length 1024
plot(noisdopp,'k'); hold on;
plot(rsig,'b','linewidth',2);
axis tight;
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If you know which doublet in the binary wavelet packet tree you want to extract, you can
determine the node corresponding to that doublet with depo2ind.

For example, to determine the node corresponding to the doublet (3,0), enter:

Node = depo2ind(2,[3 0]);

Wavelet Packets 2-D Decomposition Structure
Exactly as in the wavelet decomposition case, the preceding 1-D framework can be
extended to image analysis. Minor direct modifications lead to quaternary tree-related
definitions. An example is shown the following figure for depth 2.

Quaternary Tree of Depth 2

Wavelet Packets for Compression and Denoising
In the wavelet packet framework, compression and denoising ideas are identical to those
developed in the wavelet framework. The only new feature is a more complete analysis
that provides increased flexibility. A single decomposition using wavelet packets
generates a large number of bases. You can then look for the best representation with
respect to a design objective, using the besttree with an entropy function.
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Introduction to Object-Oriented Features
In the Wavelet Toolbox software, some object-oriented programming features are used for
wavelet packet tree structures.

You may want to skip this appendix, if you prefer to use the command line functions and
Wavelet Analyzer app without knowing about the underlying objects and classes. But, it is
useful for Save and Load actions where objects are involved.

This appendix lets you understand the objects used in the toolbox, use some functions
that are not fully documented in the reference pages, and extend the toolbox functionality
using the predefined tree structures and some object programming features.

It is helpful to be familiar with the basic MATLAB object-oriented language and
terminology.
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Objects in the Wavelet Toolbox Software
Four classes of objects are defined in the Wavelet Toolbox software.

The hierarchical organization of these objects is described in the following scheme:

Only the Wavelet Packet tools (1-D and 2-D) use the previous objects. More precisely,
WPTREE objects are used to build wavelet packets.

A short description of this hierarchy of objects follows.

The WTBO class is an abstract class. Any object in the toolbox is parented by a WTBO
object and would inherit the methods and fields of the WTBO class.

The NTREE class is dedicated to tree manipulation (node labels, node splitting, node
merging, ...), and it is also an abstract class. The main methods are

• nodejoin, which recomposes nodes
• nodesplt, which decomposes nodes
• wtreemgr, which lets you access most of tree and node information (order, depth,

terminal nodes, ascendants of a node, ...)

In fact, the wtreemgr method is not used directly, but you can use the functions
treeord, treedpth, leaves, nodeasc, ..., and the method get.

The DTREE class is dedicated to trees with associated data: vectors or matrices.

This class is also an abstract class and some methods have to be overloaded.

The aim of the WPTREE class is to manage wavelet packets 1-D and 2-D.

Some methods of the DTREE class have been overloaded, for example: split, merge,
and recons.

Most of the methods are specific to the class WPTREE; for example: bestlevt,
besttree, and wp2wtree.

By typing help wavelet you can see the available methods in the Tree Management
Utilities and Wavelets Packets Algorithms sections.
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Examples Using Wavelet Packet Tree Objects
You can use command line functions, the Wavelet Analyzer app, or you can mix both of
them to work with wavelet packet trees (WPTREE objects). The most useful commands
are

• plot, drawtree, and readtree, which let you plot and get a wavelet packet tree
• wpjoin and wpsplt, which let you change a wavelet packet tree structure
• get, read, and write, which let you read and write coefficients or information in a

wavelet packet tree

We can see some of these features in the following examples.

• “plot and wpviewcf” on page 5-53
• “drawtree and readtree” on page 5-57
• “Change Terminal Node Coefficients” on page 5-59
• “Thresholding Wavelet Packets” on page 5-61

plot and wpviewcf
load noisbump
x = noisbump;
t = wpdec(x,3,'db2');
fig = plot(t);

Click on node 7.
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Change Node Action from Visualize to Split-Merge and merge the second node.
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% From the command line, you can get the new tree.
newt = plot(t,'read',fig);

% The first argument of the plot function in the last command
% is dummy. Then the general syntax is:
%    newt = plot(DUMMY,'read',fig);
% where DUMMY is any object parented by an NTREE object.
% DUMMY can be any object constructor name, which returns
% an object parented by an NTREE object. For example:
%    newt = plot(ntree,'read',fig);
%    newt = plot(dtree,'read',fig);
%    newt = plot(wptree,'read',fig);

% From the command line you can modify the new tree,
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% then plot it.
newt = wpjoin(newt,3);
fig2 = plot(newt);

% Change Node Label from Depth_position to Index and
% click the node (3). You get the following figure.

% Using plot(newt,fig), the plot is done in the figure fig,
% which already contains a tree object.

% You can see the colored wavelet packets coefficients using
% from the command line, the wpviewcf function (type help
% wpviewcf for more information).
wpviewcf(newt,1)

% You get the following plot, which contains the terminal nodes
% colored coefficients.
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drawtree and readtree
load noisbump
x = noisbump;
t = wpdec(x,3,'db2');
fig = drawtree(t);

% The last command creates a GUI. 
% The same GUI can be obtained using waveletAnalyzer and:
% - clicking the Wavelet Packet 1-D button,
% - loading the signal noisbump,
% - choosing the level and the wavelet
% - clicking the decomposition button. 
% You get the following figure.
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% From the app, you can modify the tree. 
% For example, change Node label from Depth_Position to Index, 
% change Node Action from Visualize to Split_Merge and 
% merge the node 2. 
% You get the following figure.
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% From the command line, you can get the new tree.
newt = readtree(fig);

% From the command line you can modify the new tree;
% then plot it in the same figure.
newt = wpjoin(newt,3);
drawtree(newt,fig);

You can mix previous commands. The GUI associated with the plot command is simpler
and quicker, but more actions and information are available using portions of the Wavelet
Analyzer app related to wavelet packets.

The methods associated with WPTREE objects let you do more complicated actions.

Namely, using read and write methods, you can change terminal node coefficients.

Let's illustrate this point with the following “funny” example.

Change Terminal Node Coefficients
load gatlin2
t = wpdec2(X,1,'haar');
plot(t);
% Change Node Label from Depth_position to Index and
% click the node (0). You get the following figure.
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% Now modify the coefficients of the four terminal nodes.
newt = t;
NBcols = 40;

for node = 1:4
  cfs = read(t,'data',node);
  tmp = cfs(1:end,1:NBcols);
  cfs(1:end,1:NBcols) = cfs(1:end,end-NBcols+1:end);
  cfs(1:end,end-NBcols+1:end) = tmp;
  newt = write(newt,'data',node,cfs);
end
plot(newt)

% Change Node Label from Depth_position to Index and
% click on the node (0). You get the following figure.
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You can use this method for a more useful purpose. Let's see a denoising example.

Thresholding Wavelet Packets
load noisbloc
x = noisbloc;
t = wpdec(x,3,'sym4');
plot(t);
% Change Node Label from Depth_position to Index and
% click the node (0). You get the following plot.
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% Global thresholding.
t1 = t;
sorh = 'h';
thr = wthrmngr('wp1ddenoGBL','penalhi',t);
cfs = read(t,'data');
cfs = wthresh(cfs,sorh,thr);
t1  = write(t1,'data',cfs);
plot(t1)

% Change Node Label from Depth_position to Index and
% click the node (0). You get the following plot.
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% Node by node thresholding. 
t2 = t;
sorh = 's';
thr(1) = wthrmngr('wp1ddenoGBL','penalhi',t);
thr(2) = wthrmngr('wp1ddenoGBL','sqtwologswn',t);
tn  = leaves(t);
for k=1:length(tn)
  node = tn(k);
  cfs = read(t,'data',node);
  numthr = rem(node,2)+1;
  cfs = wthresh(cfs,sorh,thr(numthr));
  t2 = write(t2,'data',node,cfs);
end
plot(t2)

% Change Node Label from Depth_position to Index and
% click the node (0). You get the following plot.
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Description of Objects in the Wavelet Toolbox Software
The following sections describe the objects in the Wavelet Toolbox software:

• “WTBO Object” on page 5-65
• “NTREE Object” on page 5-66
• “DTREE Object” on page 5-66
• “WPTREE Object” on page 5-68

WTBO Object
Class WTBO (Wavelet Toolbox Object) -- Parent class: none

Fields

wtboInfo Object information (Not used)
ud Userdata field

Methods

wtbo Constructor for the class WTBO.
get Get WTBO object field contents.
set Set WTBO object field contents.

Comments

Since any object in the toolbox is parented by a WTBO object, you can associate your own
data to an object using the 'ud' field, and then access it.

If Obj is an object (parented by a WTBO object), use

Obj = set(Obj,'ud',MyData)

to define the data.

To retrieve the data, use

MyData = get(O,'ud') 
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NTREE Object
Class NTREE (New Tree) -- Parent class: WTBO

Fields

wtbo Parent object
order Tree order
depth Tree depth
spsch Split scheme for nodes
tn Column vector with terminal nodes indices

Methods

ntree Constructor for the class NTREE.
findactn Find active nodes.
get Get NTREE object field contents.
nodejoin Recompose node(s).
nodesplt Split (decompose) node(s).
plot Plot NTREE object.
set Set NTREE object field contents.
tlabels Labels for the nodes of a tree.
wtreemgr Manager for NTREE object.

Private
locnumcn Local number for a child node
tabofasc Table of ascendants of nodes

DTREE Object
Class DTREE (Data Tree) -- Parent class: NTREE
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Fields

ntree Parent object
allNI All Nodes Information
terNI Terminal Nodes Information

Fields Description

allNI is a NBnodes-by-3 array such that

allNI(N,:) = [ind,size(1,1),size(1,2)]

• ind = index of the node N
• size = size of data associated with the node N

terNI is a 1-by-2 cell array such that

• terNI{1} is an NB_TerminalNodes-by-2 array such that

• terNI{1}(N,:) is the size of coefficients associated with the N-th terminal node.
The nodes are numbered from left to right and from top to bottom. The root index
is 0.

• terNI{2} is a row vector containing the previous coefficients stored row-wise in the
above specified order.

Methods

dtree Constructor for the class DTREE.

expand Expand data tree.
fmdtree Field manager for DTREE object.
nodejoin Recompose node.
nodesplt Split (decompose) node.
rnodcoef Reconstruct node coefficients.

defaninf Define node information (all nodes).
get Get DTREE object field contents.
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plot Plot DTREE object.
read Read values in DTREE object fields.
set Set DTREE object field contents.
write Write values in DTREE object fields.

merge Merge (recompose) the data of a node.
recons Reconstruct node coefficients.
split Split (decompose) the data of a terminal node.

Comments

• After the constructor, the first set of methods (between line separators) might not be
overloaded (or only with great care). The second set of methods can be overloaded.
The third set of methods must be overloaded to recompose, reconstruct, or decompose
nodes data.

• The method nodejoin calls the method merge, the method nodesplt calls the
method split, and the method rnodcoef calls the method recons.

• To define nodes information, you must overload the method defaninf. For each node
N, the basic information is given by

allNI(N,1:3): [index,size(1,1),size(1,2)];

You can add other information by adding columns to allNI.

See the WPTREE object method for an example.
• If the method get is not overloaded, using the DTREE get method you can get some

object field contents (but not all).

For example, if T is parented by a DTREE object of order 2 and if 'Tfield' is a field of T,
whose content is Tval, [a,b] = get(t,'order','Tfield') returns a = 2 and b =
'errorWTBX'. Nevertheless, using a nondocumented method you can get the right
values. Namely: [a,b] = getwtbo(t,'order','Tfield') returns a = 2 and
b=Tval.

WPTREE Object
Class WPTREE (Wavelet Packet Tree) -- Parent class: DTREE
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Fields

dtree Parent object
wavInfo Structure (wavelet information)
entInfo Structure (entropy information)

Fields Description

wavInfo

wavName Wavelet Name
Lo_D Low Decomposition filter
Hi_D High Decomposition filter
Lo_R Low Reconstruction filter
Hi_R High Reconstruction filter

entInfo

entName Entropy Name
entPar Entropy Parameter

allNI Array(nbnode,5)     (field of the dtree parent object)

[ind,size,ent,ento]

ind Index
size Size of data
ent Entropy
ento Optimal Entropy

Methods
Constructor

Method Description
wptree Constructor for the class WPTREE
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Methods That Overload Those of DTREE Class

Method Description
defaninf Define node information (all nodes).
get Get WPTREE object field contents.
merge Merge (recompose) the data of a node.
read Read values in WPTREE object fields.
recons Reconstruct wavelet packet coefficients.
set Set WPTREE object field contents.
split Split (decompose) the data of a terminal node.
tlabels Labels for the nodes of a wavelet packet tree.
write Write values in WPTREE object fields.

Proper Methods of WPTREE Class

Method Description
bestlevt Best level of a wavelet packet tree.
besttree Best wavelet packet tree.
entrupd Entropy update (wavelet packet tree).
wp2wtree Extract wavelet tree from wavelet packet tree.
wpcoef Wavelet packet coefficients.
wpcutree Cut wavelet packet tree.
wpjoin Recompose wavelet packet.
wpplotcf Plot wavelet packets colored coefficients.
wprcoef Reconstruct wavelet packet coefficients.
wprec Wavelet packet reconstruction 1-D.
wprec2 Wavelet packet reconstruction 2-D.
wpsplt Split (decompose) wavelet packet.
wpthcoef Wavelet packet coefficients thresholding.
wpviewcf Plot wavelet packets colored coefficients.
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Build Wavelet Tree Objects
The following sections explain how to extend the toolbox with new objects through four
examples.

• “Building a Wavelet Tree Object (WTREE)” on page 5-71
• “Building a Right Wavelet Tree Object (RWVTREE)” on page 5-72
• “Building a Wavelet Tree Object (WVTREE)” on page 5-73
• “Building a Wavelet Tree Object (EDWTTREE)” on page 5-75

Building a Wavelet Tree Object (WTREE)
This example creates a new class of objects: WTREE.

Starting from the class DTREE and overloading the methods split and merge, we define
a wavelet tree class.

To plot a WTREE, the DTREE plot method is used.

You can have a look at a 1-D example in the ex1_wt file and at a 2-D example in the
ex2_wt file located in the toolbox/wavelet/wavelet folder. These examples can be
used directly, but they are also useful to learn how to build new object-oriented
programming functions.

The definition of the new class is described below.

Class WTREE (parent class: DTREE)

Fields

dtree Parent object
dwtMode DWT extension mode
wavInfo Structure (wavelet information)

wavInfo Structure information

wavName Wavelet Name
Lo_D Low Decomposition filter
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Hi_D High Decomposition filter
Lo_R Low Reconstruction filter
Hi_R High Reconstruction filter

Methods

wtree Constructor for the class WTREE.
merge Merge (recompose) the data of a node.
split Split (decompose) the data of a terminal node.

Building a Right Wavelet Tree Object (RWVTREE)
This example creates a new class of objects: RWVTREE.

We define a right wavelet tree class starting from the class WTREE and overloading the
methods split, merge, and plot (inherited from DTREE).

The plot method shows how to add Node Labels.

You can have a look at a 1-D example in the ex1_rwvt file and at a 2-D example in the
ex2_rwvt file located in the toolbox/wavelet/wavelet folder. These programs can be
used directly, but they are also useful to learn how to build new object-oriented
programming functions.

The definition of the new class is described below.

Class RWVTREE (parent class: WTREE)

Fields

dummy Not used
wtree Parent object

Methods

rwvtree Constructor for the class RWVTREE.
merge Merge (recompose) the data of a node.
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plot Plot RWVTREE object.
split Split (decompose) the data of a terminal node.

Running This Example

The following figure is obtained using the example ex1_rwvt and clicking the node 14.

The approximations are labeled in and the details are labeled in red. The last nodes
cannot be split.

Building a Wavelet Tree Object (WVTREE)
This example creates a new class of objects: WVTREE.
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We define a wavelet tree class starting from the class WTREE and overloading the
methods get, plot, and recons (all inherited from DTREE).

The split and merge methods of the class WTREE are used.

The plot method shows how to add Node Labels and Node Actions.

You can have a look at a 1-D example in the ex1_wvt file and at a 2-D example in the
ex2_wvt file located in the toolbox/wavelet/wavelet folder. These programs can be
used directly, but they are also useful to learn how to build new object-oriented
programming functions.

The definition of the new class is described below.

Class WVTREE (parent class: WTREE)

Fields

dummy Not used
wtree Parent object

Methods

wvtree Constructor for the class WVTREE.
get Get WVTREE object field contents.
plot Plot WVTREE object.
recons Reconstruct node coefficients.

Running This Example

The following figure is obtained using the example ex2_wvt and clicking the node 2.

The approximations are labeled in and the details are labeled in red. The last nodes
cannot be split. The title of the figure contains the DWT extension mode used ('sym' in
the present example).
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Building a Wavelet Tree Object (EDWTTREE)
This example creates a new class of objects: EDWTTREE.

We define an ε-DWT tree class starting from the class DTREE and overloading the
methods merge, plot, recons, and split.

For more information on the ε-DWT, see the section “-Decimated DWT” on page 3-66.

The plot method shows how to add Node Labels, Node Actions, and Tree Actions.
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You can have a look at the example in the ex1_edwt file located in the toolbox/
wavelet/wavelet folder. This program can be used directly, but it is also useful to learn
how to build new object-oriented programming functions.

The definition of the new class is described below.

Class EDWTTREE (parent class: DTREE)

Fields

dtree Parent object
dwtMode DWT extension mode
wavInfo Structure (wavelet information)

Fields Description

wavInfo

wavName Wavelet Name
Lo_D Low Decomposition filter
Hi_D High Decomposition filter
Lo_R Low Reconstruction filter
Hi_R High Reconstruction filter

Methods

edwttree Constructor for the class EDWTTREE.
merge Merge (recompose) the data of a node.
plot Plot EDWTTREE object.
recons Reconstruct node coefficients.
split Split (decompose) the data of a terminal node.

Running This Example

The following figure is obtained using the example ex1_edwt, selecting the Denoise
option in the Tree Action menu and clicking the node 0.
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The approximations are labeled in and the details are labeled in red. The last nodes
cannot be split.

The title of the figure contains the DWT extension mode used ('sym' in the present
example) and the name of the denoising method.
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Denoising, Nonparametric Function
Estimation, and Compression

6



Wavelet Denoising and Nonparametric Function
Estimation

In this section...
“Denoising Methods” on page 6-4
“Soft or Hard Thresholding” on page 6-6
“Dealing with Unscaled Noise and Nonwhite Noise” on page 6-7
“Wavelet Denoising in Action” on page 6-8
“Extension to Image Denoising” on page 6-14
“1-D Wavelet Variance Adaptive Thresholding” on page 6-16
“Wavelet Denoising Analysis Measurements” on page 6-20

The Wavelet Toolbox provides a number of functions for the estimation of an unknown
function (signal or image) in noise. You can use these functions to denoise signals and as
a method for nonparametric function estimation.

The most general 1-D model for this is

s(n) = f(n) + σe(n)

where n = 0,1,2,...N-1. The e(n) are Gaussian random variables distributed as N(0,1). The
variance of the σe(n) is σ2.

In practice, s(n) is often a discrete-time signal with equal time steps corrupted by additive
noise and you are attempting to recover that signal.

More generally, you can view s(n) as an N-dimensional random vector

f (0) + σe(0)
f (1) + σe(1)
f (2) + σe(2)

.

.

.
f (N − 1) + σe(N − 1)

=

f (0)
f (1)
f (2)

.

.

.
f (N − 1)

+

σe(0)
σe(1)
σe(2)

.

.

.
σe(N − 1)

In this general context, the relationship between denoising and regression is clear.
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You can replace the N-by-1 random vector by N-by-M random matrices to obtain the
problem of recovering an image corrupted by additive noise.

You can obtain a 1-D example of this model with the following code.

load cuspamax;
y = cuspamax+0.5*randn(size(cuspamax));
plot(y); hold on;
plot(cuspamax,'r','linewidth',2);
axis tight;
legend('f(n)+\sigma e(n)','f(n)', 'Location', 'NorthWest');

For a broad class of functions (signals, images) that possess certain smoothness
properties, wavelet techniques are optimal or near optimal for function recovery.

Specifically, the method is efficient for families of functions f that have only a few nonzero
wavelet coefficients. These functions have a sparse wavelet representation. For example,
a smooth function almost everywhere, with only a few abrupt changes, has such a
property.

The general wavelet–based method for denoising and nonparametric function estimation
is to transform the data into the wavelet domain, threshold the wavelet coefficients, and
invert the transform.

You can summarize these steps as:
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1 Decompose

Choose a wavelet and a level N. Compute the wavelet decomposition of the signal s
down to level N.

2 Threshold detail coefficients

For each level from 1 to N, threshold the detail coefficients.
3 Reconstruct

Compute wavelet reconstruction using the original approximation coefficients of level
N and the modified detail coefficients of levels from 1 to N.

Denoising Methods
The Wavelet Toolbox supports a number of denoising methods. Four denoising methods
are implemented in the thselect. Each method corresponds to a tptr option in the
command

thr = thselect(y,tptr)

which returns the threshold value.

Option Denoising Method
'rigrsure' Selection using principle of Stein's Unbiased Risk Estimate

(SURE)
'sqtwolog' Fixed form (universal) threshold equal to

2ln(N)

with N the length of the signal.
'heursure' Selection using a mixture of the first two options
'minimaxi' Selection using minimax principle

• Option 'rigrsure' uses for the soft threshold estimator a threshold selection rule
based on Stein's Unbiased Estimate of Risk (quadratic loss function). You get an
estimate of the risk for a particular threshold value t. Minimizing the risks in t gives a
selection of the threshold value.

• Option 'sqtwolog' uses a fixed form threshold yielding minimax performance
multiplied by a small factor proportional to log(length(s)).
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• Option 'heursure' is a mixture of the two previous options. As a result, if the signal-
to-noise ratio is very small, the SURE estimate is very noisy. So if such a situation is
detected, the fixed form threshold is used.

• Option 'minimaxi' uses a fixed threshold chosen to yield minimax performance for
mean square error against an ideal procedure. The minimax principle is used in
statistics to design estimators. Since the denoised signal can be assimilated to the
estimator of the unknown regression function, the minimax estimator is the option that
realizes the minimum, over a given set of functions, of the maximum mean square
error.

The following example shows the denoising methods for a 1000-by-1 N(0,1) vector. The
signal here is

f (n) + e(n) e(n) N(0, 1)

with f(n) = 0.

rng default;
sig = randn(1e3,1);
thr_rigrsure = thselect(sig,'rigrsure')
thr_univthresh = thselect(sig,'sqtwolog')
thr_heursure = thselect(sig,'heursure')
thr_minimaxi = thselect(sig,'minimaxi')
histogram(sig);
h = findobj(gca,'Type','patch');
set(h,'FaceColor',[0.7 0.7 0.7],'EdgeColor','w');
hold on;
plot([thr_rigrsure thr_rigrsure], [0 300],'linewidth',2);
plot([thr_univthresh thr_univthresh], [0 300],'r','linewidth',2);
plot([thr_minimaxi thr_minimaxi], [0 300],'k','linewidth',2);
plot([-thr_rigrsure -thr_rigrsure], [0 300],'linewidth',2);
plot([-thr_univthresh -thr_univthresh], [0 300],'r','linewidth',2);
plot([-thr_minimaxi -thr_minimaxi], [0 300],'k','linewidth',2);
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For Stein's Unbiased Risk Estimate (SURE) and minimax thresholds, approximately 3% of
coefficients are retained. In the case of the universal threshold, all values are rejected.

We know that the detail coefficients vector is the superposition of the coefficients of f and
the coefficients of e, and that the decomposition of e leads to detail coefficients, which are
standard Gaussian white noises.

After you use thselect to determine a threshold, you can threshold each level of a . This
second step can be done using wthcoef, directly handling the wavelet decomposition
structure of the original signal s.

Soft or Hard Thresholding
Hard and soft thresholding are examples of shrinkage rules. After you have determined
your threshold, you have to decide how to apply that threshold to your data.

The simplest scheme is hard thresholding. Let T denote the threshold and x your data.
The hard thresholding is

η(x) =
x x ≥ T
0 x < T

The soft thresholding is
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η(x) =
x− T x > T
0 x ≤ T
x + T x < − T

You can apply your threshold using the hard or soft rule with wthresh.

y = linspace(-1,1,100);
thr = 0.4;
ythard = wthresh(y,'h',thr);
ytsoft = wthresh(y,'s',thr);
subplot(131);
plot(y); title('Original Data');
subplot(132);
plot(ythard,'*'); title('Hard Thresholding');
subplot(133);
plot(ytsoft,'*'); title('Soft Thresholding');

Dealing with Unscaled Noise and Nonwhite Noise
Usually in practice the basic model cannot be used directly. We examine here the options
available to deal with model deviations in the main denoising function wdenoise.

The simplest use of wdenoise is
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sd = wdenoise(s)

which returns the denoised version sd of the original signal s obtained by using default
settings for parameters including wavelet, denoising method, and soft or hard
thresholding. Any of the default settings can be changed:

sd = wdenoise(s,n,'DenoisingMethod',tptr,'Wavelet',wav,...
     'ThresholdRule',sorh,'NoiseEstimate',scal)

which returns the denoised version sd of the original signal s obtained using the tptr
denoising method. Other parameters needed are sorh, scal, and wname. The parameter
sorh specifies the thresholding of details coefficients of the decomposition at level n of s
by the wavelet called wav. The remaining parameter scal is to be specified. It
corresponds to the method of estimating variance of noise in the data.

Option Noise Estimate Method
'LevelIndependent' 'LevelIndependent' estimates the variance of the noise

based on the finest-scale (highest-resolution) wavelet
coefficients.

'LevelDependent' 'LevelDependent' estimates the variance of the noise
based on the wavelet coefficients at each resolution level.

For a more general procedure, the wdencmp function performs wavelet coefficients
thresholding for both denoising and compression purposes, while directly handling 1-D
and 2-D data. It allows you to define your own thresholding strategy selecting in

 xd = wdencmp(opt,x,wav,n,thr,sorh,keepapp);

where

• opt = 'gbl' and thr is a positive real number for uniform threshold.
• opt = 'lvd' and thr is a vector for level dependent threshold.
• keepapp = 1 to keep approximation coefficients, as previously and
• keepapp = 0 to allow approximation coefficients thresholding.
• x is the signal to be denoised and wav, n, sorh are the same as above.

Wavelet Denoising in Action
We begin the examples of 1-D denoising methods with the first example credited to
Donoho and Johnstone.
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Blocks Signal Thresholding

First set a signal-to-noise ratio (SNR) and set a random seed.

sqrt_snr = 4;
init = 2055615866;

Generate an original signal xref and a noisy version x by adding standard Gaussian
white noise. Plot both signals.

[xref,x] = wnoise(1,11,sqrt_snr,init);
subplot(2,1,1)
plot(xref)
axis tight
title('Original Signal')
subplot(2,1,2)
plot(x)
axis tight
title('Noisy Signal')
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Denoise the noisy signal using soft heuristic SURE thresholding on detail coefficients
obtained from the wavelet decomposition of x using the sym8 wavelet. Use the default
settings of wdenoise for the remaining parameters. Compare with the original signal.

xd = wdenoise(x,'Wavelet','sym8','DenoisingMethod','SURE','ThresholdRule','Soft');
figure
subplot(2,1,1)
plot(xref)
axis tight
title('Original Signal')
subplot(2,1,2)
plot(xd)
axis tight
title('Denoised Signal')
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Since only a small number of large coefficients characterize the original signal, the
method performs very well.

Electrical Signal Denoising

When you suspect a non-white noise, thresholds must be rescaled by a level-dependent
estimation of the level noise. As a second example, let us try the method on the highly
perturbed part of an electrical signal.

First load the electrical signal and select a segment from it. Plot the segment.

load leleccum
indx = 2000:3450;
x = leleccum(indx);
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figure
plot(indx,x)
axis tight
title('Original Signal')

Denoise the signal using the db3 wavelet and a three-level wavelet decomposition and
soft fixed form thresholding. To deal with the non-white noise, use level-dependent noise
size estimation. Compare with the original signal.

xd = wdenoise(x,3,'Wavelet','db3',...
    'DenoisingMethod','UniversalThreshold',...
    'ThresholdRule','Soft',...
    'NoiseEstimate','LevelDependent');
figure
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subplot(2,1,1)
plot(indx,x)
axis tight
title('Original Signal')
subplot(2,1,2)
plot(indx,xd)
axis tight
title('Denoised Signal')
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The result is quite good in spite of the time heterogeneity of the nature of the noise after
and before the beginning of the sensor failure around time 2410.

Extension to Image Denoising
The denoising method described for the 1-D case applies also to images and applies well
to geometrical images. A direct translation of the 1-D model is

s(i, j) = f (i, j) + σ e(i, j)

where e is a white Gaussian noise with unit variance.

The 2-D denoising procedure has the same three steps and uses 2-D wavelet tools instead
of 1-D tools. For the threshold selection, prod(size(s)) is used instead of length(s) if
the fixed form threshold is used.

Note that except for the "automatic" 1-D denoising case, 2-D denoising and compression
are performed using wdencmp. To illustrate 2-D denoising, load an image and create a
noisy version of it. For purposes of reproducibility, set the random seed.

init = 2055615866;
rng(init);
load woman
img = X;
imgNoisy = img + 15*randn(size(img));

Use ddencmp to find the denoising values. In this case, fixed form threshold is used with
estimation of level noise, thresholding is soft and the approximation coefficients are kept.

[thr,sorh,keepapp] = ddencmp('den','wv',imgNoisy);
thr

thr = 107.9838

thr is equal to estimated_sigma*sqrt(log(prod(size(img)))).

Denoise the noisy image using the global threshold option. Display the results.

imgDenoised = wdencmp('gbl',imgNoisy,'sym4',2,thr,sorh,keepapp);
figure
colormap(pink(255))
sm = size(map,1);
subplot(2,2,1)
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image(wcodemat(img,sm))
title('Original Image')
subplot(2,2,2)
image(wcodemat(imgNoisy,sm))
title('Noisy Image')
subplot(2,2,3)
image(wcodemat(imgDenoised,sm))
title('Denoised Image')

The denoised image compares well with the original image.
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1-D Wavelet Variance Adaptive Thresholding
The idea is to define level by level time-dependent thresholds, and then increase the
capability of the denoising strategies to handle nonstationary variance noise models.

More precisely, the model assumes (as previously) that the observation is equal to the
interesting signal superimposed on noise

s(n) = f (n) + σ e(n)

But the noise variance can vary with time. There are several different variance values on
several time intervals. The values as well as the intervals are unknown.

Let us focus on the problem of estimating the change points or equivalently the intervals.
The algorithm used is based on an original work of Marc Lavielle about detection of
change points using dynamic programming (see [Lav99] in “References”).

Let us generate a signal from a fixed-design regression model with two noise variance
change points located at positions 200 and 600. For purposes of reproducibility, set the
random seed.

init = 2055615866;
rng(init);

x = wnoise(1,10);
bb = randn(1,length(x));
cp1 = 200;
cp2 = 600;
x = x+[bb(1:cp1),bb(cp1+1:cp2)/4,bb(cp2+1:end)];
plot(x)
title('Noisy Signal')
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The aim of this example is to recover the two change points from the signal x.

Step 1. Recover a noisy signal by suppressing an approximation. First perform a single-
level wavelet decomposition using the db3 wavelet. Then reconstruct the detail at level 1.

wname = 'db3';
lev = 1;
[c,l] = wavedec(x,lev,wname);
det = wrcoef('d',c,l,wname,1);
figure
plot(det)
title('Level 1 Detail')
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The reconstructed detail at level 1 recovered at this stage is almost signal free. It
captures the main features of the noise from a change points detection viewpoint if the
interesting part of the signal has a sparse wavelet representation. To remove almost all
the signal, we replace the biggest values by the mean.

Step 2. To remove almost all the signal, replace 2% of biggest values by the mean.

x = sort(abs(det));
v2p100 = x(fix(length(x)*0.98));
ind = find(abs(det)>v2p100);
det(ind) = mean(det);

Step 3. Use the wvarchg function to estimate the change points with the following
parameters:
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• The minimum delay between two change points is d = 10.
• The maximum number of change points is 5.

[cp_est,kopt,t_est] = wvarchg(det,5)

cp_est = 1×2

   259   611

kopt = 2

t_est = 6×6

        1024           0           0           0           0           0
         612        1024           0           0           0           0
         259         611        1024           0           0           0
         198         259         611        1024           0           0
         198         235         259         611        1024           0
         198         235         260         346         611        1024

Two change points and three intervals are proposed. Since the three interval variances
for the noise are very different the optimization program detects easily the correct
structure. The estimated change points are close to the true change points: 200 and 600.

Step 4. (Optional) Replace the estimated change points.

For 2 ≤ i ≤ 6, t_est(i,1:i-1) contains the i-1 instants of the variance change points,
and since kopt is the proposed number of change points, then

cp_est = t_est(kopt+1,1:kopt);

You can replace the estimated change points by computing:

for k=1:5
    cp_New = t_est(k+1,1:k)
end

cp_New = 612

cp_New = 1×2

   259   611
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cp_New = 1×3

   198   259   611

cp_New = 1×4

   198   235   259   611

cp_New = 1×5

   198   235   260   346   611

Wavelet Denoising Analysis Measurements
The following measurements and settings are useful for analyzing wavelet signals and
images:

• M S E — Mean square error (MSE) is the squared norm of the difference between the
data and the signal or image approximation divided by the number of elements.

• Max Error — Maximum absolute squared deviation in the signal or image
approximation.

• L2-Norm Ratio — Ratio of the squared L2-norm of the signal or image approximation
to the input signal or image. For images, the image is reshaped as a column vector
before taking the L2-norm

• P S N R — Peak signal-to-noise ratio (PSNR) in decibels. PSNR is meaningful only for
data encoded in terms of bits per sample or bits per pixel.

• B P P — Bits per pixel ratio (BPP), which is the compression ratio (Comp. Ratio)
multiplied by 8, assuming one byte per pixel (8 bits).

• Comp Ratio — Compression ratio, which is the number of elements in the
compressed image divided by the number of elements in the original image expressed
as a percentage.
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Wavelet Denoising
This example shows how to use wavelets to denoise signals and images. Because wavelets
localize features in your data to different scales, you can preserve important signal or
image features while removing noise. The basic idea behind wavelet denoising, or wavelet
thresholding, is that the wavelet transform leads to a sparse representation for many real-
world signals and images. What this means is that the wavelet transform concentrates
signal and image features in a few large-magnitude wavelet coefficients. Wavelet
coefficients which are small in value are typically noise and you can "shrink" those
coefficients or remove them without affecting the signal or image quality. After you
threshold the coefficients, you reconstruct the data using the inverse wavelet transform.

Denoise a Signal

To illustrate wavelet denoising, create a noisy "bumps" signal. In this case you have both
the original signal and the noisy version.

rng default;
[X,XN] = wnoise('bumps',10,sqrt(6));
subplot(211)
plot(X); title('Original Signal');
AX = gca;
AX.YLim = [0 12];
subplot(212)
plot(XN); title('Noisy Signal');
AX = gca;
AX.YLim = [0 12];
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Denoise the signal down to level 4 using wdenoise with default settings. wdenoise uses
the decimated wavelet transform. Plot the result along with the original signal.

xd = wdenoise(XN,4);
figure;
plot(X,'r')
hold on;
plot(xd)
legend('Original Signal','Denoised Signal','Location','NorthEastOutside')
axis tight;
hold off;
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You can also denoise the signal using the undecimated wavelet transform. Denoise the
signal again down to level 4 using the undecimated wavelet transform. Plot the result
along with the original signal.

xdMODWT = wden(XN,'modwtsqtwolog','s','mln',4,'sym4');
figure;
plot(X,'r')
hold on;
plot(xdMODWT)
legend('Original Signal','Denoised Signal','Location','NorthEastOutside')
axis tight;
hold off;
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You see that in both cases, wavelet denoising has removed a considerable amount of the
noise while preserving the sharp features in the signal. This is a challenge for Fourier-
based denoising. In Fourier-based denoising, or filtering, you apply a lowpass filter to
remove the noise. However, when the data has high-frequency features such as spikes in
a signal or edges in an image, the lowpass filter smooths these out.

You can also use wavelets to denoise signals in which the noise is nonuniform. Import and
examine a portion of a signal showing electricity consumption over time.

load leleccum; 
indx = 2000:3450;
x = leleccum(indx);
plot(x)
grid on;
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The signal appears to have more noise after approximately sample 500. Accordingly, you
want to use different thresholding in the initial part of the signal. You can use
cmddenoise to determine the optimal number of intervals to denoise and denoise the
signal. In this example, use the 'db3' wavelet and decompose the data down to level 3.

[SIGDEN,~,thrParams,~,BestNbOfInt] = cmddenoise(x,'db3',3);

Display the number of intervals and the sample values that delimit the intervals.

BestNbOfInt

BestNbOfInt = 2

thrParams{1}(:,1:2)
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ans = 2×2

           1         412
         412        1451

Two intervals were identified. The sample marking the boundary between the two
segments is 412. If you plot the signal and mark the two signal segments, you see that the
noise does appear different before and after sample 412.

plot(x)
hold on;
plot([412 412],[100 550],'r')
hold off;
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Plot the denoised signal.

plot(SIGDEN)
title('Denoised Signal')

Denoise an Image

You can also use wavelets to denoise images. In images, edges are places where the
image brightness changes rapidly. Maintaining edges while denoising an image is
critically important for perceptual quality. While traditional lowpass filtering removes
noise, it often smooths edges and adversely affects image quality. Wavelets are able to
remove noise while preserving the perceptually important features.
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Load a noisy image. Denoise the image using wdenoise2 with default settings. By
default, wdenoise2 uses the biorthogonal wavelet bior4.4. To display the original and
denoised images, do not provide any output arguments.

load(fullfile(matlabroot,'examples','wavelet', 'jump.mat'))
wdenoise2(jump)

Note that edges in the image are not smoothed out by the denoising process.

See Also
wdenoise | wdenoise2
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Denoise a Signal with the Wavelet Signal Denoiser
This example shows how to use the Wavelet Signal Denoiser app to denoise a real-valued
1-D signal. You can create and compare multiple versions of a denoised signal with the
app and export the desired denoised signal to your MATLAB® workspace. To reproduce
the denoised signal in your workspace, or to apply the same denoising parameters to
other data, you can generate and edit a MATLAB script. This example illustrates one
possible workflow.

Import Data into the App

Load data into the MATLAB workspace. The .mat file contains a clean version and a noisy
version of a signal. Plot both versions of the signal.

load fdata
plot(fNoisy,'b-')
hold on
plot(fClean,'r-','LineWidth',2)
legend('Noisy Signal','Clean Signal')
grid on
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Open the Wavelet Signal Denoiser app. From the MATLAB Toolstrip, open the Apps tab
and under Signal Processing and Communications, click Wavelet Signal Denoiser.
You can also start the app by typing waveletSignalDenoiser at the MATLAB command
prompt.

Load the noisy signal from the workspace into the app by clicking Load Signal in the
toolstrip. From the list of workspace variables that can be loaded into the app, select
fNoisy and click OK.
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The app imports the noisy signal and immediately denoises it using default parameters.
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Examine Imported Data

Examine the fNoisy plot. The app plots the original signal, fNoisy, the denoised signal,
fNoisy1, and the coarse scale approximation of the signal, Approximation.

1. The Denoised Signals pane lists all versions of the denoised signal. The list currently
contains only the signal that the app created using a default name, fNoisy1.

• You can change the default name by right-clicking it, choosing Rename Denoised
Signal from the menu, entering the new name in the dialog box, and clicking OK.

• You can delete a denoised signal by right-clicking its name and choosing Delete
Denoised Signal from the pop-up menu.
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2. The Current Wavelet Parameters pane lists the denoising parameters applied to
create fNoisy1.

3. Zoom and pan a region of interest. First, place the cursor over the plot to reveal a

floating palette.  Then select the desired
action from the palette.

• When you select to either zoom in or out, the mouse wheel controls the zoom.

4. Toggle what signals are visible in the fNoisy plot by:

• Clicking Signals ▼ in the toolstrip and using the drop-down menu to toggle the
visibility of the original and denoised signal plots.

• Clicking individual signals in the plot legend.

5. Examine the Coefficients plot.
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The coefficients in red are used to reconstruct the denoised signal. The Current Wavelet
Parameters pane indicates that a 9-level wavelet decomposition was used to denoise the
signal.

Zoom and pan a region of interest. First, place the cursor over the plot to reveal a floating
palette. Then select the desired action from the palette.

• When you select to either zoom in or out, the mouse wheel controls the zoom and not
the scrollbar.

• When you zoom in, zoom out, or pan in the D1 coefficients level, the zoom is applied to
all levels.
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Modify Denoising Parameters

Click the Wavelet tab. Use this toolstrip to adjust and apply denoising parameters for the
selected denoised signal.

The values listed are the parameters used to create the denoised signal, fNoisy1. To
modify the values of these settings, working from left to right in the toolstrip:

1. In the Wavelet dropdown menu, choose the Daubechies wavelet family, db. Because of
this action:

• The Number dropdown field changes to 1. Change the value to 2.
• A banner with blue text appears immediately in the fNoisy plot, stating that the

wavelet parameter changes are in draft mode. This text appears whenever you have
any pending changes to a signal. The banner disappears when you either apply the
changes by using the Denoise button, or navigate away from the signal to another
signal.

2. From the Method dropdown menu, select Universal Threshold.

3. To define a 10-level wavelet decomposition, change the value of Level to 10.

4. By changing the Method to Universal Threshold, the Rule setting changed
automatically from Median to Soft. Change the setting to Hard.

5. Click Level-Dependent.

6. Apply the new values for these settings by clicking Denoise.

The Current Wavelet Parameters pane updates with the new parameters used to
denoise the signal, and the app replots the denoised signal, fNoisy1.
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Note: All parameters are contextual. Possible values for one parameter can depend on
the currently selected value of another parameter. You cannot make an incompatible
selection. For example, when the denoising method is FDR, there is only possible
thresholding rule: hard. In this instance, no other values are listed in the Rule dropdown
menu.

Duplicate a Denoised Signal and Compare Approximations

If you like a particular denoised signal but want to explore more denoising parameters,
you can duplicate it. You can then modify the parameters for the duplicate, without losing
the original parameters.
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1. From the Denoised Signals pane, select fNoisy1. Then on the toolstrip, from the
Signal Denoiser tab, click Duplicate.

• The duplicate signal, fNoisy1Copy, appears highlighted in Denoised Signals.
• The denoising parameters for the duplicate are listed in Current Wavelet

Parameters.
• The duplicate is plotted as a thick line in the fNoisy plot. The plot legend updates to

include the duplicate.

2. On the Wavelet tab, change the Level to 2, and then click Denoise. The app denoises
the signal using a two-level wavelet decomposition. In addition, the app:

• Recalculates and plots the approximation for the duplicate.
• Updates the Coefficients plot to show the levels for the duplicate.

Because fNoisy1Copy is highlighted, its approximation is plotted. The app always plots
the approximation for the currently selected denoised signal. You can demonstrate this
behavior as follows. In the plot legend, click fNoisy1 and fNoisy1Copy. The names of
both denoised signals fade, and the two signals are no longer plotted. Only the original
signal and approximation plots are visible.
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The dashed line in the plot represents the approximation. Because fNoisy1Copy is
highlighted in the Denoised Signals list, the approximation plotted is the result of a two-
level wavelet decomposition. The approximation is relatively noisy. Now select fNoisy1
in the list. The approximation of a 10-level wavelet decomposition is different.
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Restore Original Parameters

You can always return to using the original default parameters by adding a new denoised
signal. From the toolstrip, on the Signal Denoiser tab, click Add.

• The added denoised signal, fNoisy2, appears highlighted in the Denoised Signals
list. The default denoising parameters are listed in Current Wavelet Parameters.

• The new denoised signal is plotted as a thick line. The approximation is calculated and
plotted as well. The plot legend updates to include fNoisy2.
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Export Results

If you want to apply the same denoising parameters to other data, you can use the app to
generate a script that reproduces the selected denoised signal. You can then modify and
save the script for your own purposes. To do further analysis, you can export a denoised
signal to your workspace.

Export Script

Click fNoisy2 in Denoised Signals. On the Signal Denoiser tab of the toolstrip, from
the Export ▼ menu, select Generate MATLAB Script. An untitled script opens in your
MATLAB Editor with the following executable code:

fNoisy2 = wdenoise(fNoisy,9, ...
    'Wavelet', 'sym4', ...
    'DenoisingMethod', 'Bayes', ...
    'ThresholdRule', 'Median', ...
    'NoiseEstimate', 'LevelIndependent');

The wdenoise input arguments are populated with the values used to create fNoisy2.
Save the script and then run. This will create the variable fNoisy2 in your workspace.

Load the file fdataTS. The file contains noisy data of 100 time series. Each time series
has 4096 data points. The data is contained in a type TimeTable variable called
fdataTS.

load fdataTS

To apply the denoising parameters to fdataTS, edit the script by replacing fNoisy with
fdataTS and fNoisy2 with fdataTSclean. Then run the script.

fdataTSclean = wdenoise(fdataTS,9, ...
    'Wavelet', 'sym4', ...
    'DenoisingMethod', 'Bayes', ...
    'ThresholdRule', 'Median', ...
    'NoiseEstimate', 'LevelIndependent');

Compare the 15th noisy time series with its denoised version.

subplot(2,1,1)
plot(fdataTS.Time,fdataTS.fTS15)
title('Original Time Series')
grid on
subplot(2,1,2)
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plot(fdataTSclean.Time,fdataTSclean.fTS15)
title('Denoised Time Series')
grid on

Export Denoised Signal

Click fNoisy2 in Denoised Signals. Then on the toolstrip, from the Signal Denoiser
tab, click the green check mark on Export ▼. Since fNoisy2 already exists in your
workspace, you can force the export and overwrite the workspace variable. Alternatively,
you can cancel the export, rename either the denoised signal in the app or the workspace
variable, and export again. A banner appears confirming the signal is exported. To
permanently remove the banner, either click X to close or import a new signal into the
app.
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Because you have the clean signal in your workspace, calculate the sign-to-noise ratio of
the denoised signal.

snrWavelet = -20*log10(norm(abs(fClean-fNoisy2))/norm(fClean))

snrWavelet = 35.9623

If you have the Signal Processing Toolbox™ denoise the signal using a moving average
filter and Savitzky-Golay filter and compute the SNR of each denoised signal.

fmv = smoothdata(fNoisy,'movmean',25);
snrMovingAverage = -20*log10(norm(abs(fClean-fmv))/norm(fClean))

snrMovingAverage = 26.0040

fsg = smoothdata(fNoisy,'sgolay',25);
snrSavitskyGolay = -20*log10(norm(abs(fClean-fsg))/norm(fClean))

snrSavitskyGolay = 28.8932

You achieve superior results denoising with the sym4 wavelet.

6 Denoising, Nonparametric Function Estimation, and Compression

6-42



Translation Invariant Wavelet Denoising with Cycle
Spinning

Cycle spinning compensates for the lack of shift invariance in the critically-sampled
wavelet transform by averaging over denoised cyclically-shifted versions of the signal or
image. The appropriate inverse circulant shift operator is applied to the denoised signal/
image and the results are averaged together to obtain the final denoised signal/image.

There are N unique cyclically-shifted versions of a signal of length, N. For an M-by-N
image, there are MN versions. This makes using all possible shifted versions
computationally prohibitive. However, in practice, good results can be obtained by using a
small subset of the possible circular shifts.

The following example shows how you use wdenoise and circshift to denoise a 1-D
signal using cycle spinning. For denoising grayscale and RGB images, wdenoise2
supports cycle spinning.

1-D Cycle Spinning
This example shows how to denoise a 1-D signal using cycle spinning and the shift-variant
orthogonal nonredundant wavelet transform. The example compares the results of the
two denoising methods.

Create a noisy 1-D bumps signal with a signal-to-noise ratio of 6. The signal-to-noise ratio

is defined as 
N X 2

2
σ  where N is the length of the signal, X 2

2 is the squared L2

norm, and σ2 is the variance of the noise.

rng default
[X,XN] = wnoise('bumps',10,sqrt(6));
subplot(2,1,1)
plot(X)
title('Original Signal')
subplot(2,1,2)
plot(XN)
title('Noisy Signal')
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Denoise the signal using cycle spinning with 15 shifts, 7 to the left and 7 to the right,
including the zero-shifted signal. Use wdenoise with default settings. By default,
wdenoise uses Daubechies' least-asymmetric wavelet with four vanishing moments,
sym4. Denoising is down to the minimum of floor(log2(N)) and wmaxlev(N,'sym4')
where N is the number of samples in the data.

ydenoise = zeros(length(XN),15);
for nn = -7:7
    yshift = circshift(XN,[0 nn]);
    [yd,cyd] = wdenoise(yshift);
    ydenoise(:,nn+8) = circshift(yd,[0, -nn]);
end
ydenoise = mean(ydenoise,2);
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Denoise the signal using wdenoise. Compare with the cycle spinning results.

xd = wdenoise(XN);
subplot(2,1,1)
plot(ydenoise,'b','linewidth',2)
hold on
plot(X,'r')
axis([1 1024 -10 10])
legend('Denoised Signal','Original Signal','Location','SouthEast')
ylabel('Amplitude')
title('Cycle Spinning Denoising')
hold off
subplot(2,1,2)
plot(xd,'b','linewidth',2)
hold on
plot(X,'r')
axis([1 1024 -10 10])
legend('Denoised Signal','Original Signal','Location','SouthEast')
xlabel('Sample')
ylabel('Amplitude')
title('Standard Orthogonal Denoising')
hold off
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absDiffDWT = norm(X-xd,2)

absDiffDWT = 12.4248

absDiffCycleSpin = norm(X-ydenoise',2)

absDiffCycleSpin = 10.6124

Cycle spinning with only 15 shifts has reduced the approximation error.
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See Also
Functions
wdenoise | wdenoise2

Apps
Wavelet Signal Denoiser

 See Also
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1-D Adaptive Thresholding of Wavelet Coefficients
This section takes you through the features of local thresholding of wavelet coefficients
for 1-D signals or data. This capability is available through Wavelet Analyzer app:

• Wavelet Denoising 1-D
• Wavelet Compression 1-D
• SWT Denoising 1-D
• Regression Estimation 1-D
• Density Estimation 1-D

This tool allows you to define, level by level, time-dependent (x-axis-dependent)
thresholds, and then increase the capability of the denoising strategies handling
nonstationary variance noise. More precisely, the model assumes that the observation is
equal to the interesting signal superimposed on noise. The noise variance can vary with
time. There are several different variance values on several time intervals. The values as
well as the intervals are unknown. This section will use one of Wavelet Analyzer app tools
(SWT Denoising 1-D) to illustrate this capability. The behavior of all the above-
mentioned tools is similar.

1-D Local Thresholding Using the Wavelet Analyzer App
1 From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.
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Click the SWT Denoising 1-D menu item.

The discrete stationary wavelet transform denoising tool for 1-D signals appears.
2 Load data.

At the MATLAB command prompt, type

load nblocr1;

In the SWT Denoising 1-D tool, select File > Import from Workspace. When the
Import from Workspace dialog box appears, select the nblocr1 variable. Click OK
to import the noisy blocks signal with two change points in the noise variance located
at positions 200 and 600.

3 Perform signal decomposition.

Select the db1 wavelet from the Wavelet menu and select 5 from the Level menu,
and then click the Decompose Signal button. After a pause for computation, the tool
displays the stationary wavelet approximation and detail coefficients of the
decomposition.
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Accept the defaults of Fixed form soft thresholding and Unscaled white noise.
Click the Denoise button.

The result is quite satisfactory, but seems to be oversmoothed when the signal is
irregular.

Select hard for the thresholding mode instead of soft, and then click the Denoise
button.
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The result is not satisfactory. The denoised signal remains noisy before position 200
and after position 700. This illustrates the limits of the classical denoising strategies.
In addition, the residuals obtained during the last trials clearly suggest to try a local
thresholding strategy.

4 Generate interval-dependent thresholds.

Click the Int. dependent threshold Settings button located at the bottom of the
thresholding method frame. A new window titled Int. Dependent Threshold
Settings for figure ... appears.
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Click the Generate button. After a pause for computation, the tool displays the
default intervals associated with adapted thresholds.
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Three intervals are proposed. Since the variances for the three intervals are very
different, the optimization program easily detects the correct structure.
Nevertheless, you can visualize the intervals proposed for a number of intervals from
1 to 6 using the Select Number of Intervals menu (which replaces the Generate
button). Using the default intervals automatically propagates the interval delimiters
and associated thresholds to all levels.

Denoise with Interval-Dependent Thresholds

Click the Close button in the Int. Dependent Threshold Settings for ... window. When
the Update thresholds dialog box appears, click Yes. The SWT Denoising 1-D main
window is updated. The sliders located to the right of the window control the level and
interval dependent thresholds. For a given interval, the threshold is indicated by yellow
dotted lines running horizontally through the graphs on the left of the window. The red
dotted lines running vertically through the graphs indicate the interval delimiters. Next
click the Denoise button.
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Modifying Interval Dependent Thresholds

The thresholds can be increased to keep only the highest values of the wavelet
coefficients at each level. Do this by dragging the yellow lines directly on the graphs on
the left of the window, or using the View Axes button (located at the bottom of the screen
near the Close button), which allows you to see each axis in full size. Another way is to
edit the thresholds by selecting the interval number located near the sliders and typing
the desired value.
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Note that you can also change the interval limits by holding down the left mouse button
over the vertical dotted red lines, and dragging them.

You can also define your own interval dependent strategy. Click the Int. dependent
threshold settings button. The Int. Dependent Threshold Settings for ... window
appears again. We shall explore this window for a little while. Click the Delete button, so
that the interval delimiters disappear. Double click the left mouse button to define new
interval delimiters; for example at positions 300 and 500 and adjust the thresholds
manually. Each level must be considered separately using the Level menu for adjusting
the thresholds. The current interval delimiters can be propagated to all levels by clicking
the Propagate button. So click the Propagate button. Adjust the thresholds for each
level, one by one. At the end, click the Close button of the Int. Dependent Threshold
settings for ... window. When the Update thresholds dialog box appears, click Yes.
Then click the denoise button.

Note that

• By double-clicking again on an interval delimiter with the left mouse button, you
delete it.

• You can move the interval delimiters (vertical red dotted lines) and the threshold
levels (horizontal yellow dotted lines) by holding down the left mouse button over
these lines and dragging them.

• The maximum number of interval delimiters at each level is 10.

Examples of Denoising with Interval Dependent Thresholds.

From the File menu, choose the Example Analysis > Noisy Signals - Interval
Dependent Noise Variance > option. From the drop down men, choose with haar at
level 4 ---> Elec. consumption — 3 intervals. The proposed items contain, in
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addition to the usual information, the “true” number of intervals. You can then experiment
with various signals for which local thresholding is needed.

Importing and Exporting Information from the Wavelet
Analyzer App
The tool lets you save the denoised signal to disk. The toolbox creates a MAT-file in the
current folder with a name you choose.

To save the denoised signal from the present denoising process, use the menu option File
> Save denoised Signal. A dialog box appears that lets you specify a folder and filename
for storing the signal. Type the name dnelec. After saving the signal data to the file
dnelec.mat, load the variables into your workspace:

load dnelec  
whos
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Name Size Bytes Class
dnelec 1x2000 16000 double array
thrParams 1x4 656 cell array
wname 1x4 8 char array

The denoised signal is given by dnelec. In addition, the parameters of the denoising
process are given by the wavelet name contained in wname:

wname

wname =  
      haar

and the level dependent thresholds contained in thrParams, which is a cell array of
length 4 (the level of the decomposition). For i from 1 to 4, thrParams{i} is an array
nbintx3 (where nbint is the number of intervals, here 3), and each row contains the
lower and upper bounds of the interval of thresholding and the threshold value. For
example, for level 1,

thrParams{1}
ans = 
    1.0e+03 * 

    0.0010 0.0980 0.0060 
    0.0980 1.1240 0.0204
    1.1240 2.0000 0.0049
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Multivariate Wavelet Denoising
This section demonstrates the features of multivariate denoising provided in the Wavelet
Toolbox software. The toolbox includes the wmulden function and a Wavelet Analyzer
app . This section also describes the command-line and app methods and includes
information about transferring signal and parameter information between the disk and
the app.

This multivariate wavelet denoising problem deals with models of the form X(t) = F(t) +
e(t), where the observation X is p-dimensional, F is the deterministic signal to be
recovered, and e is a spatially correlated noise signal. This kind of model is well suited for
situations for which such additive, spatially correlated noise is realistic.

Multivariate Wavelet Denoising — Command Line
This example uses noisy test signals. In this section, you will

• Load a multivariate signal.
• Display the original and observed signals.
• Remove noise by a simple multivariate thresholding after a change of basis.
• Display the original and denoised signals.
• Improve the obtained result by retaining less principal components.
• Display the number of retained principal components.
• Display the estimated noise covariance matrix.

1 Load a multivariate signal by typing the following at the MATLAB prompt:

load ex4mwden 
whos

Name Size Bytes Class
covar 4x4 128 double array
x 1024x4 32768 double array
x_orig 1024x4 32768 double array

Usually, only the matrix of data x is available. Here, we also have the true noise
covariance matrix (covar) and the original signals (x_orig). These signals are noisy
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versions of simple combinations of the two original signals. The first one is “Blocks”
which is irregular, and the second is “HeavySine,” which is regular except around
time 750. The other two signals are the sum and the difference of the two original
signals. Multivariate Gaussian white noise exhibiting strong spatial correlation is
added to the resulting four signals, which leads to the observed data stored in x.

2 Display the original and observed signals by typing

kp = 0; 
for i = 1:4  
    subplot(4,2,kp+1), plot(x_orig(:,i)); axis tight;
    title(['Original signal ',num2str(i)]) 
    subplot(4,2,kp+2), plot(x(:,i)); axis tight;
    title(['Observed signal ',num2str(i)])
    kp = kp + 2; 
end
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The true noise covariance matrix is given by

covar

covar =
    1.0000    0.8000    0.6000    0.7000
    0.8000    1.0000    0.5000    0.6000
    0.6000    0.5000    1.0000    0.7000
    0.7000    0.6000    0.7000    1.0000

3 Remove noise by simple multivariate thresholding.

The denoising strategy combines univariate wavelet denoising in the basis where the
estimated noise covariance matrix is diagonal with noncentered Principal Component
Analysis (PCA) on approximations in the wavelet domain or with final PCA.

First, perform univariate denoising by typing the following to set the denoising
parameters:

level = 5; 
wname = 'sym4'; 
tptr  = 'sqtwolog'; 
sorh  = 's';

Then, set the PCA parameters by retaining all the principal components:

npc_app = 4; 
npc_fin = 4;

Finally, perform multivariate denoising by typing
x_den = wmulden(x, level, wname, npc_app, npc_fin, tptr, sorh);

4 Display the original and denoised signals by typing

kp = 0; 
for i = 1:4   
    subplot(4,3,kp+1), plot(x_orig(:,i)); 
    set(gca,'xtick',[]); axis tight;
    title(['Original signal ',num2str(i)])
    subplot(4,3,kp+2), plot(x(:,i)); set(gca,'xtick',[]);
    axis tight; 
    title(['Observed signal ',num2str(i)]) 
    subplot(4,3,kp+3), plot(x_den(:,i)); set(gca,'xtick',[]);
    axis tight;  
    title(['denoised signal ',num2str(i)]) 
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    kp = kp + 3;
end

5 Improve the first result by retaining fewer principal components.

The results are satisfactory. Focusing on the two first signals, note that they are
correctly recovered, but the result can be improved by taking advantage of the
relationships between the signals, leading to an additional denoising effect.

To automatically select the numbers of retained principal components by Kaiser's rule
(which keeps the components associated with eigenvalues exceeding the mean of all
eigenvalues), type

npc_app = 'kais'; 
npc_fin = 'kais';

Perform multivariate denoising again by typing
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[x_den, npc, nestco] = wmulden(x, level, wname, npc_app, ...  
     npc_fin, tptr, sorh);

6 Display the number of retained principal components.

The second output argument gives the numbers of retained principal components for
PCA for approximations and for final PCA.

npc

npc = 
    2     2

As expected, since the signals are combinations of two initial ones, Kaiser's rule
automatically detects that only two principal components are of interest.

7 Display the estimated noise covariance matrix.

The third output argument contains the estimated noise covariance matrix:

nestco

nestco = 
    1.0784    0.8333    0.6878    0.8141
    0.8333    1.0025    0.5275    0.6814
    0.6878    0.5275    1.0501    0.7734
    0.8141    0.6814    0.7734    1.0967

As you can see by comparing with the true matrix covar given previously, the
estimation is satisfactory.

8 Display the original and final denoised signals by typing

kp = 0; 
for i = 1:4   
    subplot(4,3,kp+1), plot(x_orig(:,i)); 
    set(gca,'xtick',[]); axis tight;  
    title(['Original signal ',num2str(i)]); set(gca,'xtick',[]);
    axis tight; 
    subplot(4,3,kp+2), plot(x(:,i)); set(gca,'xtick',[]);
    axis tight; 
    title(['Observed signal ',num2str(i)]) 
    subplot(4,3,kp+3), plot(x_den(:,i)); set(gca,'xtick',[]);  
    axis tight;
    title(['denoised signal ',num2str(i)]) 
    kp = kp + 3;
end
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The results are better than those previously obtained. The first signal, which is irregular,
is still correctly recovered, while the second signal, which is more regular, is denoised
better after this second stage of PCA.

Multivariate Wavelet Denoising Using the Wavelet Analyzer
App
This section explores a denoising strategy for multivariate signals using the Wavelet
Analyzer app.

1 Start the Multivariate Denoising Tool by first opening the Wavelet Analyzer app. Type
waveletAnalyzer at the command line.
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2 Click Multivariate Denoising to open the Multivariate Denoising portion of the
app.

3 Load data.

At the MATLAB command prompt, type

load ex4mwden

In the Multivariate Denoising tool, select File > Import from Workspace. When
the Import from Workspace dialog box appears, select the x variable. Click OK to
import the noisy multivariate signal. The signal is a matrix containing four columns,
where each column is a signal to be denoised.
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These signals are noisy versions from simple combinations of the two original signals.
The first one is “Blocks” which is irregular and the second is “HeavySine” which is
regular except around time 750. The other two signals are the sum and the difference
between the original signals. Multivariate Gaussian white noise exhibiting strong
spatial correlation is added to the resulting four signals.

The following example illustrates the two different aspects of the proposed denoising
method. First, perform a convenient change of basis to cope with spatial correlation
and denoise in the new basis. Then, use PCA to take advantage of the relationships
between the signals, leading to an additional denoising effect.

4 Perform a wavelet decomposition and diagonalize the noise covariance matrix.

Use the displayed default values for the Wavelet, the DWT Extension Mode, and
the decomposition Level, and then click Decompose and Diagonalize. The tool
displays the wavelet approximation and detail coefficients of the decomposition of
each signal in the original basis.

Select Noise Adapted Basis to display the signals and their coefficients in the noise-
adapted basis.

To see more information about this new basis, click More on Noise Adapted Basis.
A new figure displays the robust noise covariance estimate matrix and the
corresponding eigenvectors and eigenvalues.
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Eigenvectors define the change of basis, and eigenvalues are the variances of
uncorrelated noises in the new basis.

The multivariate denoising method proposed below is interesting if the noise
covariance matrix is far from diagonal exhibiting spatial correlation, which, in this
example, is the case.

5 denoise the multivariate signal.

A number of options are available for fine-tuning the denoising algorithm. However,
we will use the defaults: fixed form soft thresholding, scaled white noise model, and
the proposed numbers of retained principal components. In this case, the default
values for PCA lead to retaining all the components.

Select Original Basis to return to the original basis and then click Denoise.
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The results are satisfactory. Both of the two first signals are correctly recovered, but
they can be improved by getting more information about the principal components.
Click More on Principal Components.

A new figure displays information to select the numbers of components to keep for the
PCA of approximations and for the final PCA after getting back to the original basis. You
can see the percentages of variability explained by each principal component and the
corresponding cumulative plot. Here, it is clear that only two principal components are of
interest.

Close the More on Principal Components window. Select 2 as the Nb. of PC for APP.
Select 2 as the Nb. of PC for final PCA, and then click denoise.
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The results are better than those previously obtained. The first signal, which is irregular,
is still correctly recovered. The second signal, which is more regular, is denoised better
after this second stage of PCA. You can get more information by clicking Residuals.

Importing and Exporting from the Wavelet Analyzer App
The tool lets you save denoised signals to disk by creating a MAT-file in the current folder
with a name of your choice.

To save the signal denoised in the previous section,

1 Select File > Save denoised Signals.
2 Select Save denoised Signals and Parameters. A dialog box appears that lets you

specify a folder and filename for storing the signal.
3 Type the name s_ex4mwden and click OK to save the data.
4 Load the variables into your workspace:

load s_ex4mwdent
whos

Name Size Bytes Class
DEN_Params 1x1 430 struct array
PCA_Params 1x1 1536 struct array
x 1024x4 32768 struct array

The denoised signals are in matrix x. The parameters (PCA_Params and DEN_Params) of
the two-stage denoising process are also available.
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• PCA_Params are the change of basis and PCA parameters:

PCA_Params

PCA_Params =  
    NEST: {[4x4 double]  [4x1 double]  [4x4 double]}
     APP: {[4x4 double]  [4x1 double]  [2]}
     FIN: {[4x4 double]  [4x1 double]  [2]}

PCA_Params.NEST{1} contains the change of basis matrix. PCA_Params.NEST{2}
contains the eigenvalues, and PCA_Params.NEST{3} is the estimated noise covariance
matrix.

PCA_Params.APP{1} contains the change of basis matrix, PCA_Params.APP{2}
contains the eigenvalues, and PCA_Params.APP{3} is the number of retained principal
components for approximations.

The same structure is used for PCA_Params.FIN for the final PCA.

• DEN_Params are the denoising parameters in the diagonal basis:

DEN_Params

DEN_Params =   
     thrVAL: [4.8445 2.0024 1.1536 1.3957 0] 
    thrMETH: 'sqtwolog' 
    thrTYPE: 's'

The thresholds are encoded in thrVAL. For j from 1 to 5, thrVAL(j) contains the value
used to threshold the detail coefficients at level j. The thresholding method is given by
thrMETH and the thresholding mode is given by thrTYPE.
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Wavelet Multiscale Principal Components Analysis
This section demonstrates the features of multiscale principal components analysis
provided in the Wavelet Toolbox software. The toolbox includes the wmspca function and
a Wavelet Analyzer app. This section describes the command-line and app methods, and
information about transferring signal and parameter information between the disk and
the app.

The aim of multiscale PCA is to reconstruct, starting from a multivariate signal and using
a simple representation at each resolution level, a simplified multivariate signal. The
multiscale principal components generalizes the normal PCA of a multivariate signal
represented as a matrix by performing a PCA on the matrices of details of different levels
simultaneously. A PCA is also performed on the coarser approximation coefficients matrix
in the wavelet domain as well as on the final reconstructed matrix. By selecting the
numbers of retained principal components, interesting simplified signals can be
reconstructed.

Since you can perform multiscale PCA either from the command line or using the app,
this section has subsections covering each method.

Multiscale Principal Components Analysis — Command Line
This example uses noisy test signals. In this section, you will:

• Load a multivariate signal.
• Perform a simple multiscale PCA.
• Display the original and simplified signals.
• Improve the obtained result by retaining less principal components.

1 Load a multivariate signal by typing at the MATLAB prompt:

load ex4mwden  
whos

Name Size Bytes Class
covar 4x4 128 double array
x 1024x4 32768 double array
x_orig 1024x4 32768 double array
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The data stored in matrix x comes from two test signals, Blocks and HeavySine, and
from their sum and difference, to which multivariate Gaussian white noise has been
added.

2 Perform a simple multiscale PCA.

The multiscale PCA combines noncentered PCA on approximations and details in the
wavelet domain and a final PCA. At each level, the most significant principal
components are selected.

First, set the wavelet parameters:

level= 5; 
wname = 'sym4';

Then, automatically select the number of retained principal components using
Kaiser's rule by typing

npc = 'kais';

Finally, perform multiscale PCA:

[x_sim, qual, npc] = wmspca(x ,level, wname, npc); 
3 Display the original and simplified signals:

kp = 0; 
for i = 1:4  
    subplot(4,2,kp+1), plot(x (:,i)); set(gca,'xtick',[]);
    axis tight; 
    title(['Original signal ',num2str(i)]) 
    subplot(4,2,kp+2), plot(x_sim(:,i)); set(gca,'xtick',[]);
    axis tight; 
    title(['Simplified signal ',num2str(i)]) 
    kp = kp + 2;
end
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The results from a compression perspective are good. The percentages reflecting the
quality of column reconstructions given by the relative mean square errors are close
to 100%.

qual

qual =  

   98.0545   93.2807   97.1172   98.8603
4 Improve the first result by retaining fewer principal components.

The results can be improved by suppressing noise, because the details at levels 1 to 3
are composed essentially of noise with small contributions from the signal. Removing
the noise leads to a crude, but large, denoising effect.

The output argument npc contains the numbers of retained principal components
selected by Kaiser's rule:

npc  

npc =   
     1     1     1     1     1     2     2

For d from 1 to 5, npc(d) is the number of retained noncentered principal
components (PCs) for details at level d. The number of retained noncentered PCs for
approximations at level 5 is npc(6), and npc(7) is the number of retained PCs for
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final PCA after wavelet reconstruction. As expected, the rule keeps two principal
components, both for the PCA approximations and the final PCA, but one principal
component is kept for details at each level.

To suppress the details at levels 1 to 3, update the npc argument as follows:

npc(1:3) = zeros(1,3);

npc  

npc = 
0     0     0     1     1     2     2

Then, perform multiscale PCA again:

[x_sim, qual, npc] = wmspca(x, level, wname, npc); 
5 Display the original and final simplified signals:

kp = 0; 
for i = 1:4  
    subplot(4,2,kp+1), plot(x (:,i)); set(gca,'xtick',[]);
    axis tight; 
    title(['Original signal ',num2str(i)]); set(gca,'xtick',[]);
    axis tight;  
    subplot(4,2,kp+2), plot(x_sim(:,i)); set(gca,'xtick',[]);
    axis tight;  
    title(['Simplified signal ',num2str(i)]) 
    kp = kp + 2;
end
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As shown, the results are improved.

Multiscale Principal Components Analysis Using the Wavelet
Analyzer App
This section explores multiscale PCA using the Wavelet Analyzer app.

1 Open the Wavelet Analyzer app by typing waveletAnalyzer at the command line.
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2 Click Multiscale Princ. Comp. Analysis to open the Multiscale Principal
Components Analysis tool in the app.

3 Load data.

At the MATLAB command prompt, type

load ex4mwden

In the Multiscale Princ. Comp. Analysis tool, select File > Import from
Workspace. When the Import from Workspace dialog box appears, select the x
variable. Click OK to import the multivariate signal. The signal is a matrix containing
four columns, where each column is a signal to be simplified.
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These signals are noisy versions from simple combinations of the two original signals,
Blocks and HeavySine and their sum and difference, each with added multivariate
Gaussian white noise.

4 Perform a wavelet decomposition and diagonalize each coefficients matrix.

Use the default values for the Wavelet, the DWT Extension Mode, and the
decomposition Level, and then click Decompose and Diagonalize. The tool displays
the wavelet approximation and detail coefficients of the decomposition of each signal
in the original basis.

To get more information about the new bases allowed for performing a PCA for each
scale, click More on Adapted Basis. A new figure displays the corresponding
eigenvectors and eigenvalues for the matrix of the detail coefficients at level 1.
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You can change the level or select the coarser approximations or the reconstructed
matrix to investigate the different bases. When you finish, click Close.

5 Perform a simple multiscale PCA.

The initial values for PCA lead to retaining all the components. Select Kaiser from
the Provide default using drop-down list, and click Apply.

The results are good from a compression perspective.
6 Improve the obtained result by retaining fewer principal components.

The results can be improved by suppressing the noise, because the details at levels 1
to 3 are composed essentially of noise with small contributions from the signal, as
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you can see by careful inspection of the detail coefficients. Removing the noise leads
to a crude, but large, denoising effect.

For D1, D2 and D3, select 0 as the Nb. of non-centered PC and click Apply.

The results are better than those previously obtained. The first signal, which is
irregular, is still correctly recovered, while the second signal, which is more regular,
is denoised better after this second stage of PCA. You can get more information by
clicking Residuals.

Importing and Exporting from the Wavelet Analyzer App
The Multiscale Principal Components Analysis tool lets you save the simplified signals to
disk. The toolbox creates a MAT-file in the current folder with a name of your choice.

To save the simplified signals from the previous section:

1 Select File > Save Simplified Signals.
2 Select Save Simplified Signals and Parameters. A dialog box appears that lets you

specify a folder and file name for storing the signal.
3 Type the name s_ex4mwden and click OK to save the data.
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4 Load the variables into your workspace:

load s_ex4mwden 
whos

Name Size Bytes Class
PCA_Params 1x7 2628 struct array
x 1024x4 32768 double array

The simplified signals are in matrix x. The parameters of multiscale PCA are available
in PCA_Params:

PCA_Params

PCA_Params =  
1x7 struct array with fields:
    pc
    variances
    npc

PCA_Params is a structure array of length d+2 (here, the maximum decomposition level
d=5) such that PCA_Params(d).pc is the matrix of principal components. The columns
are stored in descending order of the variances. PCA_Params(d).variances is the
principal component variances vector, and PCA_Params(d).npc is the vector of selected
numbers of retained principal components.
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Wavelet Data Compression
The compression features of a given wavelet basis are primarily linked to the relative
scarceness of the wavelet domain representation for the signal. The notion behind
compression is based on the concept that the regular signal component can be accurately
approximated using the following elements: a small number of approximation coefficients
(at a suitably chosen level) and some of the detail coefficients.

Like denoising, the compression procedure contains three steps:

1 Decompose

Choose a wavelet, choose a level N. Compute the wavelet decomposition of the signal
s at level N.

2 Threshold detail coefficients

For each level from 1 to N, a threshold is selected and hard thresholding is applied to
the detail coefficients.

3 Reconstruct

Compute wavelet reconstruction using the original approximation coefficients of level
N and the modified detail coefficients of levels from 1 to N.

The difference of the denoising procedure is found in step 2. There are two compression
approaches available. The first consists of taking the wavelet expansion of the signal and
keeping the largest absolute value coefficients. In this case, you can set a global
threshold, a compression performance, or a relative square norm recovery performance.

Thus, only a single parameter needs to be selected. The second approach consists of
applying visually determined level-dependent thresholds.

Let us examine two real-life examples of compression using global thresholding, for a
given and unoptimized wavelet choice, to produce a nearly complete square norm
recovery for a signal (see “Signal Compression” on page 6-81) and for an image (see
“Image Compression” on page 6-82).

% Load electrical signal and select a part. 
load leleccum; indx = 2600:3100; 
x = leleccum(indx);
% Perform wavelet decomposition of the signal. 
n = 3; w = 'db3'; 

6 Denoising, Nonparametric Function Estimation, and Compression

6-80



[c,l] = wavedec(x,n,w);
% Compress using a fixed threshold. 
thr = 35; 
keepapp = 1;
[xd,cxd,lxd,perf0,perfl2] = ...
   wdencmp('gbl',c,l,w,n,thr,'h',keepapp);

Signal Compression

The result is quite satisfactory, not only because of the norm recovery criterion, but also
on a visual perception point of view. The reconstruction uses only 15% of the coefficients.

% Load original image. 
load woman; x = X(100:200,100:200); 
nbc = size(map,1);

% Wavelet decomposition of x. 
n = 5; w = 'sym2'; [c,l] = wavedec2(x,n,w);

% Wavelet coefficients thresholding. 
thr = 20; 
keepapp = 1;
[xd,cxd,lxd,perf0,perfl2] = ...
                 wdencmp('gbl',c,l,w,n,thr,'h',keepapp);
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Image Compression

If the wavelet representation is too dense, similar strategies can be used in the wavelet
packet framework to obtain a sparser representation. You can then determine the best
decomposition with respect to a suitably selected entropy-like criterion, which
corresponds to the selected purpose (denoising or compression).

Compression Scores
When compressing using orthogonal wavelets, the Retained energy in percentage is
defined by

100 * vector‐norm(coeffs of the current decomposition, 2) 2

vector‐norm(original signal, 2) 2

When compressing using biorthogonal wavelets, the previous definition is not convenient.
We use instead the Energy ratio in percentage defined by

100 * vector‐norm(compressed signal, 2) 2

vector‐norm(original signal, 2) 2
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and as a tuning parameter the Norm cfs recovery defined by

100 * vector‐norm(coeffs of the current decomposition, 2) 2

vector‐norm(coeffs of the original decomposition, 2) 2

The Number of zeros in percentage is defined by

100 * (number of zeros of the current decomposition)
(number of coefficients)
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Wavelet Compression for Images
In “Wavelet Data Compression” on page 6-80, we addressed the aspects specifically
related to compression using wavelets. However, in addition to the algorithms related to
wavelets like DWT and IDWT, it is necessary to use other ingredients concerning the
quantization mode and the coding type in order to deal with true compression.

This more complex process can be represented by the following figure.

Effects of Quantization
Let us show the effects of quantization on the visualization of the fingerprint image. This
indexed image corresponds to a matrix of integers ranging between 0 and 255. Through
quantization we can decrease the number of colors which is here equal to 256.

The next figure illustrates how to decrease from 256 to 16 colors by working on the
values of the original image.
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We can see on this figure:

• At the top

• On the left: the original image
• On the right: the corresponding histogram of values

• At the bottom

• On the left: the reconstructed image
• On the right: the corresponding histogram of quantized values

This quantization leads to a compression of the image. Indeed, with a fixed length binary
code, 8 bits per pixel are needed to code 256 colors and 4 bits per pixel to code 16 colors.
We notice that the image obtained after quantization is of good quality. However, within
the framework of true compression, quantization is not used on the original image, but on
its wavelet decomposition.

Let us decompose the fingerprint image at level 4 with the Haar wavelet. The histogram
of wavelet coefficients and the quantized histogram are normalized so that the values
vary between –1 and +1. The 15 intervals of quantization do not have the same length.

The next figure illustrates how to decrease information by binning on the wavelet
coefficient values of the original image.
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We can see on this figure:

• At the top

• On left: the original image
• On the right: the corresponding histogram (central part) of coefficient values

• At the bottom

• On the left: the reconstructed image
• On the right: the corresponding histogram (central part) of quantized coefficient

values

The key point is that the histogram of the quantized coefficients is massively concentrated
in the class centered in 0. Let us note that yet again the image obtained is of good quality.

True Compression Methods
The basic ideas presented above are used by three methods which cascade in a single
step, coefficient thresholding (global or by level), and encoding by quantization. Fixed or
Huffman coding can be used for the quantization depending on the method.
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The following table summarizes these methods, often called Coefficients Thresholding
Methods (CTM), and gives the MATLAB name used by the true compression tools for each
of them.

MATLAB Name Compression Method Name
'gbl_mmc_f' Global thresholding of coefficients and fixed encoding
'gbl_mmc_h' Global thresholding of coefficients and Huffman encoding
'lvl_mmc' Subband thresholding of coefficients and Huffman encoding

More sophisticated methods are available which combine wavelet decomposition and
quantization. This is the basic principle of progressive methods.

On one hand, progressivity makes it possible during decoding to obtain an image whose
resolution increases gradually. In addition, it is possible to obtain a set of compression
ratios based on the length of the preserved code. This compression usually involves a loss
of information, but this kind of algorithm enables also lossless compression.

Such methods are based on three ideas. The two first, already mentioned, are the use of
wavelet decomposition to ensure sparsity (a large number of zero coefficients) and
classical encoding methods. The third idea, decisive for the use of wavelets in image
compression, is to exploit fundamentally the tree structure of the wavelet decomposition.
Certain codes developed from 1993 to 2000 use this idea, in particular, the EZW coding
algorithm introduced by Shapiro. See [Sha93] in “References”.

EZW combines stepwise thresholding and progressive quantization, focusing on the more
efficient way to encode the image coefficients, in order to minimize the compression ratio.
Two variants SPIHT and STW (see the following table) are refined versions of the seminal
EZW algorithm.

Following a slightly different objective, WDR (and the refinement ASWDR) focuses on the
fact that in general some portions of a given image require more refined coding leading to
a better perceptual result even if there is generally a small price to pay in terms of
compression ratio.

A complete review of these progressive methods is in the Walker reference [Wal99] in
“References”.

The following table summarizes these methods, often called Progressive Coefficients
Significance Methods (PCSM), and gives the MATLAB coded name used by the true
compression tools for each of them.
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MATLAB Name Compression Method Name
'ezw' Embedded Zerotree Wavelet
'spiht' Set Partitioning In Hierarchical Trees
'stw' Spatial-orientation Tree Wavelet
'wdr' Wavelet Difference Reduction
'aswdr' Adaptively Scanned Wavelet Difference Reduction
'spiht_3d' Set Partitioning In Hierarchical Trees 3D for truecolor

images

Quantitative and Perceptual Quality Measures
The following quantitative measurements and measures of perceptual quality are useful
for analyzing wavelet signals and images.

• M S E — Mean square error (MSE) is the squared norm of the difference between the
data and the signal or image approximation divided by the number of elements. The
MSE is defined by:

MSE = 1
mn ∑i = 0

m = 1
∑

j = 0

n = 1
X(i, j) − Xc(i, j) 2

• Max Error — Maximum error is the maximum absolute squared deviation in the
signal or image approximation.

• L2-Norm Ratio — L2-norm ratio is the ratio of the squared L2-norm of the signal or
image approximation to the input signal or image. For images, the image is reshaped
as a column vector before taking the L2-norm

• P S N R — Peak signal-to-noise ratio (PSNR) is a measure of the peak error in
decibels. PSNR is meaningful only for data encoded in terms of bits per sample or bits
per pixel. The higher the PSNR, the better the quality of the compressed or
reconstructed image. Typical values for lossy compression of an image are between 30
and 50 dB. When the PSNR is greater than 40 dB, then the two images are
indistinguishable. The PSNR is defined by:

PSNR = 10 ⋅ log10
2552

MSE
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• B P P — Bits per pixel ratio (BPP) is the number of bits required to store one pixel of
the image. The BPP is the compression ratio multiplied by 8, assuming one byte per
pixel (8 bits).

• Comp Ratio — Compression ratio is ratio of the number of elements in the
compressed image divided by the number of elements in the original image, expressed
as a percentage.

More Information on True Compression
You can find examples illustrating command-line mode and app tools for true compression
in “Wavelet Compression for Images” on page 6-84 and the reference page for
wcompress.

More information on the true compression for images and more precisely on the
compression methods is in [Wal99], [Sha93], [Sai96], [StrN96], and [Chr06]. See
“References”.

 Wavelet Compression for Images

6-89



2-D Wavelet Compression
This section takes you through the features of wavelet 2-D true compression using the
Wavelet Toolbox software.

For more information on the compression methods see “Wavelet Compression for Images”
on page 6-84 in the Wavelet Toolbox User's Guide.

For more information on the main function available when using command-line mode, see
the wcompress reference pages.

Starting from a given image, the goal of the true compression is to minimize the length of
the sequence of bits needed to represent it, while preserving information of acceptable
quality. Wavelets contribute to effective solutions for this problem.

The complete chain of compression includes phases of quantization, coding and decoding
in addition of the wavelet processing itself.

The purpose of this section is to show how to compress and uncompress a grayscale or
truecolor image using various compression methods.

In this section, you'll learn to

• Compress using global thresholding and Huffman encoding
• Uncompress
• Compress using progressive methods
• Handle truecolor images

2-D Wavelet Compression Commands
Compression by Global Thresholding and Huffman Encoding

First load and display the grayscale image mask.

load mask; 
image(X) 
axis square; 
colormap(pink(255)) 
title('Original Image: mask')
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A synthetic performance of the compression is given by the compression ratio and the Bit-
Per-Pixel ratio which are equivalent.

The compression ratio CR means that the compressed image is stored using only CR% of
the initial storage size.

The Bit-Per-Pixel ratio BPP gives the number of bits used to store one pixel of the image.

For a grayscale image, the initial BPP is 8 while for a truecolor image the initial BPP is 24
because 8 bits are used to encode each of the three colors (RGB color space).

The challenge of compression methods is to find the best compromise between a weak
compression ratio and a good perceptual result.

Let us begin with a simple method cascading global coefficients thresholding and
Huffman encoding. We use the default wavelet bior4.4 and the default level which is the
maximum possible level (see the wmaxlev function) divided by 2.

The desired Bit-Per-Pixel ratio BPP is set to 0.5 and the compressed image will be stored
in the file named 'mask.wtc'.

meth = 'gbl_mmc_h'; % Method name 
option = 'c';         % 'c' stands for compression 
[CR,BPP] = wcompress(option,X,'mask.wtc',meth,'bpp',0.5)

CR =
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  6.6925

BPP =

  0.5354

The achieved Bit-Per-Pixel ratio is actually about 0.53 (closed to the desired one) for a
compression ratio of 6.7%.

Uncompression

Let us uncompress the image retrieved from the file 'mask.wtc' and compare it to the
original image.

option = 'u';  % 'u' stands for uncompression 
Xc = wcompress(option,'mask.wtc');
colormap(pink(255)) 
subplot(1,2,1); image(X); 
axis square; 
title('Original Image') 
subplot(1,2,2); image(Xc); 
axis square; 
title('Compressed Image') 
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ...
        ['BPP: ' num2str(BPP,'%3.2f')]})
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Compression by Progressive Methods

Let us now illustrate the use of progressive methods starting with the well known EZW
algorithm using the Haar wavelet. The key parameter is the number of loops. Increasing
it, leads to better recovery but worse compression ratio.

meth = 'ezw';     % Method name 
wname  = 'haar';  % Wavelet name 
nbloop = 6;       % Number of loops 
[CR,BPP] = wcompress('c',X,'mask.wtc',meth, ...
                     'maxloop',nbloop,'wname',wname); 
Xc = wcompress('u','mask.wtc');
colormap(pink(255)) 
subplot(1,2,1); image(X); 
axis square; 
title('Original Image') 
subplot(1,2,2); image(Xc); 
axis square; title('Compressed Image - 6 steps') 
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ...
        ['BPP: ' num2str(BPP,'%3.2f')]}) 

A too small number of steps (here 6) produces a very coarse compressed image. So let us
examine a little better result for 9 steps and a satisfactory result for 12 steps.

[CR,BPP]= wcompress('c',X,'mask.wtc',meth,'maxloop',9, ...
                    'wname','haar'); 
Xc = wcompress('u','mask.wtc'); 
colormap(pink(255))
subplot(1,2,1); image(Xc); 
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axis square; title('Compressed Image - 9 steps') 
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')],...
        ['BPP: ' num2str(BPP,'%3.2f')]})  

[CR,BPP] = wcompress('c',X,'mask.wtc',meth,'maxloop',12, ...
                     'wname','haar'); 
Xc = wcompress('u','mask.wtc');
subplot(1,2,2); image(Xc); 
axis square; 
title('Compressed Image - 12 steps') 
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')],...
        ['BPP: ' num2str(BPP,'%3.2f')]}) 

As can be seen, the reached BPP ratio is about 0.92 when using 12 steps.

Let us try to improve it by using the wavelet bior4.4 instead of haar and looking at
obtained results for steps 12 and 11.

[CR,BPP] = wcompress('c',X,'mask.wtc','ezw','maxloop',12, ...
                     'wname','bior4.4'); 
Xc = wcompress('u','mask.wtc'); 
colormap(pink(255))
subplot(1,2,1); image(Xc); 
axis square; 
title('Compressed Image - 12 steps - bior4.4') 
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ...
        ['BPP: ' num2str(BPP,'%3.2f')]})
[CR,BPP] = wcompress('c',X,'mask.wtc','ezw','maxloop',11, ...
                     'wname','bior4.4'); 
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Xc = wcompress('u','mask.wtc');
subplot(1,2,2); image(Xc); 
axis square; 
title('Compressed Image - 11 steps - bior4.4') 
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ...
        ['BPP: ' num2str(BPP,'%3.2f')]}) 

Starting from the eleventh loop, the result can be considered satisfactory. The reached
BPP ratio is now about 0.35. It can even be slightly improved by using a more recent
method: SPIHT (Set Partitioning In Hierarchical Trees).

[CR,BPP] = wcompress('c',X,'mask.wtc','spiht','maxloop',12, ...
                     'wname','bior4.4'); 
Xc = wcompress('u','mask.wtc');
colormap(pink(255)) 
subplot(1,2,1); image(X); 
axis square; 
title('Original Image') 
subplot(1,2,2); image(Xc); 
axis square; 
title('Compressed Image - 12 steps - bior4.4') 
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ...
        ['BPP: ' num2str(BPP,'%3.2f')]}) 
[psnr,mse,maxerr,l2rat] = measerr(X,Xc)

delete('mask.wtc') 
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The final compression ratio (2.8%) and the Bit-Per-Pixel ratio (0.23) are very satisfactory.
Let us recall that the first ratio means that the compressed image is stored using only
2.8% of the initial storage size.

Handling Truecolor Images

Finally, let us illustrate how to compress the wpeppers.jpg truecolor image. Truecolor
images can be compressed along the same scheme as the grayscale images by applying
the same strategies to each of the three color components.

The progressive compression method used is SPIHT (Set Partitioning In Hierarchical
Trees) and the number of encoding loops is set to 12.

X = imread('wpeppers.jpg'); 
[CR,BPP] = wcompress('c',X,'wpeppers.wtc','spiht','maxloop',12);
Xc = wcompress('u','wpeppers.wtc'); 
subplot(1,2,1); image(X); 
axis square; 
title('Original Image') 
subplot(1,2,2); image(Xc); 
axis square;
title('Compressed Image - 12 steps - bior4.4') 
xlabel({['Compression Ratio: ' num2str(CR,'%1.2f %%')], ... 
        ['BPP: ' num2str(BPP,'%3.2f')]})
delete('wpeppers.wtc')
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The compression ratio (1.65%) and the Bit-Per-Pixel ratio (0.4) are very satisfactory while
maintaining a good visual perception.

2-D Wavelet Compression using the Wavelet Analyzer App
In this section, we explore the different methods for 2-D true compression, using the
Wavelet Analyzer app.

1 Start the True Compression 2-D Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears. Click the True Compression 2-D item. The true
compression tool for images appears.

2 Load the image.

At the MATLAB command prompt, type

load mask

In the True Compression 2-D tool, select File > Import Image from Workspace.
When the Import from Workspace dialog box appears, select the X variable. Click
OK to import the data. The image appears at the top left of the window together with
the gray level histogram just below.
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3 Perform a Wavelet Decomposition.

Accept the default wavelet bior4.4 and select 4 from the Level menu which is the
maximum possible level divided by 2 and then click the Decompose button. After a
pause for computation, the tool displays the wavelet approximation and details
coefficients of the decomposition for the three directions, together with the
histogram of the original coefficients.
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The peak of the bin containing zero illustrates the capability of wavelets to
concentrate the image energy into a few nonzero coefficients.

4 Try a simple method.

Begin with a simple method cascading global coefficients thresholding and Huffman
encoding.

Choose the GBL_MMC_H option from the menu Compression method located at
the top right of the Compression Parameters frame. For more information on the
compression methods, see “Wavelet Compression for Images” on page 6-84 in the
Wavelet Toolbox User's Guide.

Set the desired Bit-Per-Pixel ratio to 0.5.

Values of the other parameters are automatically updated. Note that these values are
only approximations of the true performances since the quantization step cannot be
exactly predicted without performing it. Click the Compress button.
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Synthetic performance is given by the compression ratio and the computed Bit-Per-
Pixel (BPP). This last one is actually about 0.53 (close to the desired one 0.5) for a
compression ratio of 6.7%.

The compressed image, at the bottom left, can be compared with the original image.

The result is satisfactory but a better compromise between compression ratio and
visual quality can be obtained using more sophisticated true compression which
combines the thresholding and quantization steps.

5 Compress using a first progressive method: EZW.

Let us now illustrate the use of progressive methods starting with the well known
EZW algorithm. Let us start by selecting the wavelet haar from the Wavelet menu
and select 8 from the Level menu. Then click the Decompose button.

Choose the EZW option from the menu Compression method. The key parameter is
the number of loops: increasing it leads to a better recovery but worse compression
ratio. From the Nb. Encoding Loops menu, set the number of encoding loops to 6,
which is a small value. Click the Compress button.
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6 Refine the result by increasing the number of loops.
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Too few steps produce a very coarse compressed image. So let us examine a little
better result for 9 steps. Set the number of encoding loops to 9 and click the
Compress button.
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As can be seen, the result is better but not satisfactory, both by visual inspection and
by calculating the Peak Signal to Noise Ratio (PSNR) which is less than 30.
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Now try a large enough number of steps to get a satisfactory result. Set the number
of encoding loops to 12 and click the Compress button.
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The result is now acceptable. But for 12 steps, we attain a Bit-Per-Pixel ratio about
0.92.
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7 Get better compression performance by changing the wavelet and selecting the best
adapted number of loops.

Let us try to improve the compression performance by changing the wavelet: select
bior4.4 instead of haar and then click the Decompose button.

In order to select the number of loops, the Wavelet Analyzer app tool allows you to
examine the successive results obtained by this kind of stepwise procedure. Set the
number of encoding loops at a large value, for example 13, and click the Show
Compression Steps button. Moreover you could execute the procedure stepwise by
clicking the Stepwise button.

Then, click the Compress button. Thirteen progressively more finely compressed
images appear, and you can then select visually a convenient value for the number of
loops. A satisfactory result seems to be obtained after 11 loops. So, you can set the
number of encoding loops to 11 and click the Compress button.

The reached BPP ratio is now about 0.35 which is commonly considered a very
satisfactory result. Nevertheless, it can be slightly improved by using a more recent
method SPIHT (Set Partitioning In Hierarchical Trees).

8 Obtain a final compressed image by using a third method.
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Choose the SPIHT option from the menu Compression method, set the number of
encoding loops to 12, and click the Compress button.

The final compression ratio and the Bit-Per-Pixel ratio are very satisfactory: 2.8% and
0.22. Let us recall that the first ratio means that the compressed image is stored
using only 2.8% of the initial storage size.

9 Handle truecolor images.

Finally, let us illustrate how to compress truecolor images. The truecolor images can
be compressed along the same scheme by applying the same strategies to each of the
three-color components.

From the File menu, choose the Load Image option and select the Matlab
Supported Formats item.

When the Load Image dialog box appears, select the MAT-file wpeppers.jpg which
should reside in the MATLAB folder toolbox/wavelet/wavelet.

Click the OK button. A window appears asking you if you want to consider the loaded
image as a truecolor one. Click the Yes button. Accept the defaults for wavelet and
decomposition level menus and then click the Decompose button.
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Then, accept the default compression method SPIHT and set the number of encoding
loops to 12. Click the Compress button.

The compression ratio and Bit-Per-Pixel (BPP) ratio are very satisfactory: 1.65% and
0.4 together with a very good perceptual result.

10 Inspect the wavelet tree.

For both grayscale and truecolor images, more insight on the multiresolution
structure of the compressed image can be retrieved by clicking the Inspect Wavelet
Trees button and then on the various active menus available from the displayed tree.
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Importing and Exporting from the Wavelet Analyzer App
You can save the compressed image to disk in the current folder with a name of your
choice.

The Wavelet Toolbox compression tools can create a file using either one of the Matlab
Supported Format types or a specific format which can be recognized by the extension of
the file: wtc (Wavelet Toolbox Compressed).

To save the above compressed image, use the menu option File > Save Compressed
Image > Wavelet Toolbox Compressed Image. A dialog box appears that lets you
specify a folder and filename for storing the image. Of course, the use of the wtc format
requires you to uncompress the stored image using the Wavelet Toolbox true compression
tools.

6 Denoising, Nonparametric Function Estimation, and Compression

6-110



Univariate Wavelet Regression
This section takes you through the features of 1-D wavelet regression estimation using
one of the Wavelet Toolbox specialized tools. The toolbox provides a Wavelet Analyzer app
to explore some denoising schemes for equally or unequally sampled data.

For the examples in this section, switch the extension mode to symmetric padding, using
the command

dwtmode('sym')

Regression for Equally-Spaced Observations
1 Start the Regression Estimation 1-D Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.

Click the Regression Estimation 1-D menu item. The discrete wavelet analysis tool
for 1-D regression estimation appears.

2 Load data.
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At the MATLAB command prompt, type

load blocregdata;

In the Regression Estimation 1-D tool, select File > Import from Workspace.
When the Import from Workspace dialog box appears, select the blocregdata
data. Click OK to import the data. The loaded data and processed data obtained after
a binning are displayed.

3 Choose the processed data.

The default value for the number of bins is 256 for this example. Enter 64 in the Nb
bins (number of bins) edit box, or use the slider to adjust the value. The new binned
data to be processed appears.

The binned data appears to be very smoothed. Select 1000 from the Nb bins edit and
press Enter or use the slider. The new data to be processed appears.

The binned data appears to be very close to the initial data, since noisbloc is of
length 1024.

4 Perform a Wavelet Decomposition of the processed data.

Select the haar wavelet from the Wavelet menu and select 5 from the Level menu,
and then click the Decompose button. After a pause for computation, the tool
displays the detail coefficients of the decomposition.
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5 Perform a regression estimation.

While a number of options are available for fine-tuning the estimation algorithm, we'll
accept the defaults of fixed form soft thresholding and unscaled white noise. The
sliders located to the right of the window control the level dependent thresholds,
indicated by yellow dotted lines running horizontally through the graphs on the left
part of the window.

Continue by clicking the Estimate button.

You can see that the process removed the noise and that the blocks are well
reconstructed. The regression estimate (in yellow) is the sum of the signals located

 Univariate Wavelet Regression

6-113



below it: the approximation a5 and the reconstructed details after coefficient
thresholding.

You can experiment with the various predefined thresholding strategies by selecting
the appropriate options from the menu located on the right part of the window or
directly by dragging the yellow horizontal lines with the left mouse button.

Let us now illustrate the regression estimation using the Wavelet Analyzer app for
randomly or irregularly spaced observations, focusing on the differences from the
previous situation.

Regression for Randomly-Spaced Observations
1 From the File menu, choose the Load > Data for Stochastic Design Regression

option. When the Load data for Stochastic Design Regression dialog box appears,
select the MAT-file ex1nsto.mat, which should reside in the MATLAB folder
toolbox/wavelet/wavelet. Click the OK button. This short set of data (of size
500) is loaded into the Regression Estimation 1-D -- Stochastic Design tool.

The loaded data denoted (X,Y), the histogram of X, and the processed data obtained
after a binning are displayed. The histogram is interesting, because the values of X
are randomly distributed. The binning step is essential since it transforms a problem
of regression estimation for irregularly spaced X data into a classical fixed design
scheme for which fast wavelet transform can be used.

2 Select the sym4 wavelet from the Wavelet menu, select 5 from the Level menu, and
enter 125 in the Nb bins edit box. Click the Decompose button. The tool displays
the detail coefficients of the decomposition.

3 From the Select thresholding method menu, select the item Penalize low and
click the Estimate button.
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4 Check Overlay Estimated Function to validate the fit of the original data.

Importing and Exporting Information from the Wavelet
Analyzer App
Saving Function

This tool lets you save the estimated function to disk. The toolbox creates a MAT-file in the
current folder with a name you choose.

To save the estimated function from the present estimation, use the menu option File >
Save Estimated Function. A dialog box appears that lets you specify a folder and
filename for storing the function. Type the name fex1nsto. After saving the function
data to the file fex1nsto.mat, load the variables into your workspace:

load fex1nsto  
whos 
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Name Size Bytes Class
thrParams 1x5 580 cell array
wname 1x4 8 char array
xdata 1x125 1000 double array
ydata 1x125 1000 double array

The estimated function is given by xdata and ydata. The length of these vectors is equal
to the number of bins you choose in step 2. In addition, the parameters of the estimation
process are given by the wavelet name contained in wname:

wname

wname =
    sym4

and the level dependent thresholds contained in thrParams, which is a cell array of
length 5 (the level of the decomposition). For i from 1 to 5, thrParams{i} contains the
lower and upper bounds of the interval of thresholding and the threshold value (since
interval dependent thresholds are allowed). For more information, see “1-D Adaptive
Thresholding of Wavelet Coefficients” on page 6-48 in the Wavelet Toolbox User's Guide.

For example, for level 1,

thrParams{1}

ans = 
    -0.4987 0.4997 1.0395

Loading Data

To load data for regression estimation, your data must be in the form of a structure array
with exactly two fields. The fields must be named xdata and ydata, and must be the
same length.

For example, load the file containing the data considered in the previous example:

clear
load ex1nsto
whos 
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Name Size Bytes Class
xdata 1x500 4000 double array
ydata 1x500 4000 double array

At the end of this section, turn back the extension mode to zero padding using the
command

dwtmode('zpd')
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Matching Pursuit

• “Matching Pursuit Algorithms” on page 7-2
• “Matching Pursuit” on page 7-8
• “Matching Pursuit Using Wavelet Analyzer App” on page 7-23
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Matching Pursuit Algorithms
In this section...
“Redundant Dictionaries and Sparsity” on page 7-2
“Nonlinear Approximation in Dictionaries” on page 7-3
“Basic Matching Pursuit” on page 7-3
“Orthogonal Matching Pursuit” on page 7-6
“Weak Orthogonal Matching Pursuit” on page 7-6

Redundant Dictionaries and Sparsity
Representing a signal in a particular basis involves finding the unique set of expansion
coefficients in that basis. While there are many advantages to signal representation in a
basis, particularly an orthogonal basis, there are also disadvantages.

The ability of a basis to provide a sparse representation depends on how well the signal
characteristics match the characteristics of the basis vectors. For example, smooth
continuous signals are sparsely represented in a Fourier basis, while impulses are not. A
smooth signal with isolated discontinuities is sparsely represented in a wavelet basis.
However, a wavelet basis is not efficient at representing a signal whose Fourier transform
has narrow high frequency support.

Real-world signals often contain features that prohibit sparse representation in any single
basis. For these signals, you want the ability to choose vectors from a set not limited to a
single basis. Because you want to ensure that you can represent every vector in the
space, the dictionary of vectors you choose from must span the space. However, because
the set is not limited to a single basis, the dictionary is not linearly independent.

Because the vectors in the dictionary are not a linearly independent set, the signal
representation in the dictionary is not unique. However, by creating a redundant
dictionary, you can expand your signal in a set of vectors that adapt to the time-frequency
or time-scale characteristics of your signal. You are free to create a dictionary consisting
of the union of several bases. For example, you can form a basis for the space of square-
integrable functions consisting of a wavelet packet basis and a local cosine basis. A
wavelet packet basis is well adapted to signals with different behavior in different
frequency intervals. A local cosine basis is well adapted to signals with different behavior
in different time intervals. The ability to choose vectors from each of these bases greatly
increases your ability to sparsely represent signals with varying characteristics.
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Nonlinear Approximation in Dictionaries
Define a dictionary as a collection of unit-norm elementary building blocks for your signal
space. These unit-norm vectors are called atoms. If the atoms of the dictionary span the
entire signal space, the dictionary is complete.

If the dictionary atoms form a linearly-dependent set, the dictionary is redundant. In most
applications of matching pursuit, the dictionary is complete and redundant.

Let {φk} denote the atoms of a dictionary. Assume the dictionary is complete and
redundant. There is no unique way to represent a signal from the space as a linear
combination of the atoms.

x = ∑
k

αkϕk

An important question is whether there exists a best way. An intuitively satisfying way to
choose the best representation is to select the φk yielding the largest inner products (in
absolute value) with the signal. For example, the best single φk is

max
k

< x, ϕk >

which for a unit-norm atom is the magnitude of the scalar projection onto the subspace
spanned by φk.

The central problem in matching pursuit is how you choose the optimal M-term expansion
of your signal in a dictionary.

Basic Matching Pursuit
Let Φ denote the dictionary of atoms as a N-by-M matrix with M>N. If the complete,
redundant dictionary forms a frame for the signal space, you can obtain the minimum L2
norm expansion coefficient vector by using the frame operator.

Φ† = Φ*(Φ Φ*)−1

However, the coefficient vector returned by the frame operator does not preserve
sparsity. If the signal is sparse in the dictionary, the expansion coefficients obtained with
the canonical frame operator generally do not reflect that sparsity. Sparsity of your signal
in the dictionary is a trait that you typically want to preserve. Matching pursuit addresses
sparsity preservation directly.
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Matching pursuit is a greedy algorithm that computes the best nonlinear approximation
to a signal in a complete, redundant dictionary. Matching pursuit builds a sequence of
sparse approximations to the signal stepwise. Let Φ= {φk} denote a dictionary of unit-
norm atoms. Let f be your signal.

1 Start by defining R0f = f
2 Begin the matching pursuit by selecting the atom from the dictionary that maximizes

the absolute value of the inner product with R0f = f. Denote that atom by φp.
3 Form the residual R1f by subtracting the orthogonal projection of R0f onto the space

spanned by φp.

R1f = R0f − R0f , ϕp ϕp

4 Iterate by repeating steps 2 and 3 on the residual.

Rm + 1f = Rmf − Rmf , ϕk ϕk

5 Stop the algorithm when you reach some specified stopping criterion.

In nonorthogonal (or basic) matching pursuit, the dictionary atoms are not mutually
orthogonal vectors. Therefore, subtracting subsequent residuals from the previous one
can introduce components that are not orthogonal to the span of previously included
atoms.

To illustrate this, consider the following example. The example is not intended to present
a working matching pursuit algorithm.

Consider the following dictionary for Euclidean 2-space. This dictionary is an equal-norm
frame.

1
0

,
1/2
3/2

,
−1/ 2
−1/ 2

Assume you have the following signal.

1
1/2

The following figure illustrates this example. The dictionary atoms are in red. The signal
vector is in blue.
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Construct this dictionary and signal in MATLAB.

dictionary = [1 0; 1/2 sqrt(3)/2; -1/sqrt(2) -1/sqrt(2)]';
x = [1 1/2]';

Compute the inner (scalar) products between the signal and the dictionary atoms.

scalarproducts = dictionary'*x;

The largest scalar product in absolute value occurs between the signal and [-1/
sqrt(2); -1/sqrt(2)]. This is clear because the angle between the two vectors is
almost π radians.

Form the residual by subtracting the orthogonal projection of the signal onto [-1/
sqrt(2); -1/sqrt(2)] from the signal. Next, compute the inner products of the
residual (new signal) with the remaining dictionary atoms. It is not necessary to include
[-1/sqrt(2); -1/sqrt(2)] because the residual is orthogonal to that vector by
construction.

residual = x-scalarproducts(3)*dictionary(:,3);
scalarproducts = dictionary(:,1:2)'*residual;

The largest scalar product in absolute value is obtained with [1;0]. The best two atoms
in the dictionary from two iterations are [-1/sqrt(2); -1/sqrt(2)] and [1;0]. If
you iterate on the residual, you see that the output is no longer orthogonal to the first
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atom chosen. In other words, the algorithm has introduced a component that is not
orthogonal to the span of the first atom selected. This fact and the associated
complications with convergence argues in favor of “Orthogonal Matching Pursuit” on
page 7-6 (OMP).

Orthogonal Matching Pursuit
In orthogonal matching pursuit (OMP), the residual is always orthogonal to the span of
the atoms already selected. This results in convergence for a d-dimensional vector after at
most d steps.

Conceptually, you can do this by using Gram-Schmidt to create an orthonormal set of
atoms. With an orthonormal set of atoms, you see that for a d-dimensional vector, you can
find at most d orthogonal directions.

The OMP algorithm is:

1 Denote your signal by f. Initialize the residual R0f = f.
2 Select the atom that maximizes the absolute value of the inner product with R0f = f.

Denote that atom by φp.
3 Form a matrix, Φ, with previously selected atoms as the columns. Define the

orthogonal projection operator onto the span of the columns of Φ.

P = Φ (Φ*Φ)−1Φ*
4 Apply the orthogonal projection operator to the residual.
5 Update the residual.

Rm + 1f = (I − P)Rmf

I is the identity matrix.

Orthogonal matching pursuit ensures that components in the span of previously selected
atoms are not introduced in subsequent steps.

Weak Orthogonal Matching Pursuit
It can be computationally efficient to relax the criterion that the selected atom maximizes
the absolute value of the inner product to a less strict one.

7 Matching Pursuit

7-6



x, ϕp ≥ αmax
k

x, ϕk , α ∈ 0, 1

This is known as weak matching pursuit.
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Matching Pursuit
In this section...
“Matching Pursuit Dictionary Creation and Visualization” on page 7-8
“Orthogonal Matching Pursuit on a 1-D Signal” on page 7-10
“Electricity Consumption Analysis Using Matching Pursuit” on page 7-12

Matching Pursuit Dictionary Creation and Visualization
This example shows how to create and visualize a dictionary consisting of a Haar wavelet
down to level 2.

[mpdict,~,~,longs] = wmpdictionary(100,'lstcpt',{{'haar',2}});

Use the longs output argument to divide the wavelet dictionary by level and type of
function (scaling or wavelet). Step through a plot of the translated scaling functions and
wavelets by level.

for nn = 1:size(mpdict,2)
    if (nn <= longs{1}(1))
        plot(mpdict(:,nn),'k','linewidth',2)
        grid on
        xlabel('Translation')
        title('Haar Scaling Function - Level 2')
    elseif (nn>longs{1}(1) && nn<= longs{1}(1)+longs{1}(2))
        plot(mpdict(:,nn),'r','linewidth',2)
        grid on
        xlabel('Translation')
        title('Haar Wavelet - Level 2')
    else
        plot(mpdict(:,nn),'b','linewidth',2)
        grid on
        xlabel('Translation')
        title('Haar Wavelet - Level 1')
    end
        pause(0.2)
end
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This animation infinitely loops through all the plots generated.
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Orthogonal Matching Pursuit on a 1-D Signal
This example shows how to perform orthogonal matching pursuit on a 1-D input signal
that contains a cusp.

Load the cuspamax signal. Construct a dictionary consisting of Daubechies least
asymmetric wavelet packets at level 4, Daubechies extremal phase wavelets at level 2, the
DCT-II basis, the sin basis, and the shifted Kronecker delta basis.

load cuspamax;
dict = {{'wpsym4',1},{'db4',2},'dct','sin','RnIdent'};
mpdict = wmpdictionary(length(cuspamax),'lstcpt',dict);
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Use orthogonal matching pursuit to obtain an approximation of the signal in the
overcomplete dictionary, mpdict, with 25 iterations. Plot the result as a movie, updating
every 5 iterations.

[yfit,r,coeff,iopt,qual] = wmpalg('OMP',cuspamax,mpdict,'typeplot',...
    'movie','stepplot',5);
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Electricity Consumption Analysis Using Matching Pursuit
This example shows how to compare matching pursuit with a nonlinear approximation in
the discrete Fourier transform basis. The data is electricity consumption data collected
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over a 24-hour period. The example demonstrates that by selecting atoms from a
dictionary, matching pursuit is often able to approximate a vector more efficiently with M
vectors than any single basis.

Matching Pursuit Using DCT, Sine, and Wavelet Dictionaries

Load the dataset and plot the data. The dataset contains 35 days of electric consumption.
Choose day 32 for further analysis. The data is centered and scaled, so the actual units of
usage are not relevant.

load elec35_nor
x = signals(32,:);

plot(x)
xlabel('Minutes')
ylabel('Usage')
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The electricity consumption data contains smooth oscillations punctuated by abrupt
increases and decreases in usage.

Zoom in on a time interval from 500 minutes to 1200 minutes.

xlim([500 1200])
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You can see the abrupt changes in the slowly-varying signal at approximately 650, 760,
and 1120 minutes. In many real-world signals like these data, the interesting and
important information is contained in the transients. It is important to model these
transient phenomena.

Construct a signal approximation using 35 vectors chosen from a dictionary with
orthogonal matching pursuit (OMP). The dictionary consists of the Daubechies extremal
phase wavelet and scaling vectors at level 2, the discrete cosine transform (DCT) basis, a
sine basis, the Kronecker delta basis, and the Daubechies least asymmetric phase wavelet
and scaling vectors with 4 vanishing moments at levels 1 and 4. Then, use OMP to find
the best 35-term greedy approximation of the electric consumption data. Plot the result.
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dictionary = {{'db1',2},{'db1',3},'dct','sin','RnIdent',{'sym4',4}};
[mpdict,nbvect] = wmpdictionary(length(x),'lstcpt',dictionary);
[y,~,~,iopt] = wmpalg('OMP',x,mpdict);

plot(x)
hold on
plot(y)
hold off
xlabel('Minutes')
ylabel('Usage')
legend('Original Signal','OMP')

You can see that with 35 coefficients, orthogonal matching pursuit approximates both the
smoothly-oscillating part of the signal and the abrupt changes in electricity usage.
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Determine how many vectors the OMP algorithm selected from each of the
subdictionaries.

basez = cumsum(nbvect);
k = 1;
for nn = 1:length(basez)
    if (nn == 1)
        basezind{nn} = 1:basez(nn);
    else
        basezind{nn} = basez(nn-1)+1:basez(nn);
    end
end
dictvectors = cellfun(@(x)intersect(iopt,x),basezind, ...
    'UniformOutput',false);

The majority (60%) of the vectors come from the DCT and sine basis. Given the overall
slowly-varying nature of the electricity consumption data, this is expected behavior. The
additional 14 vectors from the wavelet subdictionaries captures the abrupt signal
changes. The number of vectors of each type is:

• 3 Daubechies wavelet (db4) level 2 vectors
• 16 Discrete cosine transform vectors
• 5 Sine vectors
• 2 Daubechies least-asymmetric wavelet (sym4) level 1 vectors
• 9 Daubechies least-asymmetric wavelet (sym4) level 4 vectors

Matching Pursuit Using DCT and Sine Dictionary vs. Full Dictionary

Repeat the OMP with only the DCT and sine subdictionaries. Set the OMP to select the 35
best vectors from the DCT-sine dictionary. Construct the dictionary and perform the OMP.
Compare the OMP with the DCT-sine dictionary to the OMP with the additional wavelet
subdictionaries. Notice that adding the wavelet subdictionaries shows the abrupt changes
in electricity usage more accurately. The advantage of including the wavelet bases is
especially clear especially in approximating the upward and downward spikes in usage at
approximately 650 and 1120 minutes.

dictionary2 = {'dct','sin'};
[mpdict2,nbvect2] = wmpdictionary(length(x),'lstcpt',dictionary2);
y2 = wmpalg('OMP',x,mpdict2,'itermax',35);

plot(x)
hold on
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plot(y2,'linewidth',2)
hold off
title('DCT and Sine Dictionary')
xlabel('Minutes')
ylabel('Usage')
xlim([500 1200])

figure
plot(x)
hold on
plot(y,'linewidth',2)
hold off
title('Full Dictionary')
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xlabel('Minutes')
ylabel('Usage')
xlim([500 1200])

Obtain the best 35-term nonlinear approximation of the signal in the discrete Fourier
basis. Obtain the DFT of the data, sort the DFT coefficients, and select the 35 largest
coefficients. The DFT of a real-valued signal is conjugate symmetric, so only consider
frequencies from 0 (DC) to the Nyquist (1/2 cycles/minute).

xdft = fft(x);
[~,I] = sort(xdft(1:length(x)/2+1),'descend');
ind = I(1:35);
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Examine the vector ind. None of the indices correspond to 0 or the Nyquist. Add the
corresponding complex conjugate to obtain the nonlinear approximation in the DFT basis.
Plot the approximation and the original signal.

indconj = length(xdft)-ind+2;
ind = [ind indconj];
xdftapp = zeros(size(xdft));
xdftapp(ind) = xdft(ind);
xrec = ifft(xdftapp);

plot(x)
hold on
plot(xrec,'LineWidth',2)
hold off
xlabel('Minutes')
ylabel('Usage')
legend('Original Signal','Nonlinear DFT Approximation')
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Similar to the DCT-sine dictionary, the nonlinear DFT approximation performs well at
matching the smooth oscillations in electricity consumption data. However, the nonlinear
DFT approximation does not approximate the abrupt changes accurately. Zoom in on the
interval of the data containing the abrupt changes in consumption.

plot(x)
hold on
plot(xrec,'LineWidth',2)
hold off
xlabel('Minutes')
ylabel('Usage')
legend('Original Signal','Nonlinear DFT Approximation')
xlim([500 1200])
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Matching Pursuit Using Wavelet Analyzer App
In this section...
“Matching Pursuit 1-D Interactive Tool” on page 7-23
“Interactive Matching Pursuit of Electricity Consumption Data” on page 7-39

Matching Pursuit 1-D Interactive Tool
You can perform basic, orthogonal, and weak orthogonal matching pursuit using the
Wavelet Analyzer app. To access the Matching Pursuit 1-D, enter waveletAnalyzer at
the MATLAB command prompt.
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Click Matching Pursuit 1-D.
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To demonstrate the Matching Pursuit 1-D tool, select File —> Example —> Cusp
signal.
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In the upper left corner, you see the plot of the signal with the matching pursuit
approximation superimposed.
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Underneath the plot, you see the relative errors using the L1, L2, and L-infinity norms.

The maximum relative error in a given norm is

100 R
Y ,

where || || denotes the specified norm, R is the residual vector at each iteration in the
matching pursuit algorithm, and Y is the signal.

In the middle panel on the left is the plot of the final residual vector after the matching
pursuit algorithm terminates.
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The bottom left panel displays the percentage of retained signal energy (L2 norm) and the
relative error percentages for the L1, L2, and L-infinity norms over the algorithm
iterations.
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In the top middle panel of the Matching Pursuit 1-D tool, you see the indices of the
selected coefficients from the subdictionaries.
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The left vertical axis shows the name of the subdictionary. The right vertical axis gives the
ratio of selected vectors to the total number of vectors in the subdictionary. The location
of the vertical bars along the horizontal axis gives the relative positions of the selected
vectors in the subdictionaries.

More detailed information on selected components is available by clicking More on
Components in the bottom right panel.

The bottom middle panel displays the superposition of selected vectors from the
subdictionaries.
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This plot enables you to assess the relative contribution of the subdictionaries to the
signal approximation. In this example, you can see that the cosine and DCT
subdictionaries contribute significantly to the approximation of the slowly-varying
portions of the signal. The Daubechies least asymmetric wavelet with 4 vanishing
moments (sym4) enables the matching pursuit to sparsely represent the cusp around
index 700.

In the top right panel of the Matching Pursuit 1-D tool, you see the dictionary used in
the analysis.
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You have the ability to add or delete subdictionaries with Add Component and Del
Component.

The next panel contains the algorithm stopping rules.

• Max. Iterations — This controls the number of iterations of the greedy matching
pursuit algorithm. The value is equal to the number of expansion coefficients (vectors)
used in the approximation. The utility of matching pursuit is that you can approximate
many real-world signals efficiently with far fewer vectors than needed to span the
signal space.

• Max Relative Error — Specifies the stopping criterion based on the maximum
relative error. Choose one of None, L2 norm, L1 norm, or Linf norm.

The maximum relative error in a given norm is

100 R
Y ,
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where || || denotes the specified norm, R is the residual vector at each iteration in the
matching pursuit algorithm, and Y is the signal.

In the next panel you select the algorithm used in the matching pursuit. Choose one of
Basic MP for basic matching pursuit, Orthogonal MP for orthogonal matching pursuit,
and Weak MP for weak orthogonal matching pursuit. See “Matching Pursuit Algorithms”
on page 7-2 for a brief description of these algorithms.

In the Display Parameters panel, you can control how the progress of the matching
pursuit is displayed.

Select one of

• Final Plot — Plots the result of matching pursuit only after the algorithm
terminates.

• Stepwise — Updates the result every N iterations where N is a positive integer. If you
select Stepwise, the Display every iterations item becomes visible. Select the
number of iterations from the drop down menu. You are prompted to step through the
algorithm with the Next or Final Plot.

• Movie — Updates the result every N iterations where N is a positive integer in a
continuous manner. If you select Movie, the Display every iterations item becomes
visible. Select the number of iterations from the drop down menu. Click Continue to
step through the algorithm as a movie, which continues until the algorithm terminates.
Click Pause to pause the algorithm, or Final Plot to update only at the termination of
the algorithm.

After you obtain a matching pursuit of a signal, use
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to obtain detailed interactive plots and information on the selected dictionary atoms and
the final residual vector.

Click More on Components.

From the above figure, you can see that while the DCT and cosine subdictionaries
contribute energy across the extent of the signal, the wavelet and wavelet packet
contributions are localized at the cusp around sample 700. This result is expected
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because wavelets and wavelet packets excel at sparsely representing abrupt changes in a
signal or image.

Change the Display to the Coefficients view.

The Selection of Coefficients panel enables you to selectively sort and display
contributions to the signal approximation by the various subdictionaries.

Under Selection parameters, choose By Family and sym4 — lev5. Click Select
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From the preceding operation, you see that the wavelet packet contributes to the
approximation of the cusp, but does not contribute significantly to the global
approximation.

Choose dct and click Select.
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The DCT basis contributes significantly to the global approximation of the signal but the
smooth DCT basis vectors are not able to sparsely represent the cusp.

Selecting More on Residuals on the Matching Pursuit 1-D tool allows you to examine
the residual vector, a histogram of the residuals, a cumulative histogram, the estimated
autocorrelation sequence, and the magnitude-squared discrete Fourier transform.
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You can control which plots are displayed and the appearance of the histogram by the
options in the right panel.
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Interactive Matching Pursuit of Electricity Consumption Data
This example shows how to perform an interactive matching pursuit of electricity
consumption data collected over a 24-hour period.

Load the electricity consumption signals in the workspace. Select the data for the 32nd
day for further matching pursuit.

load elec35_nor;
x = signals(32,:);

To start the app, enter waveletAnalyzer at the MATLAB command prompt.

Click the Matching Pursuit 1-D tool.
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Select File —> Import Signal from Workspace

Load x.

Construct the following matching pursuit dictionary.
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In the Algorithm Stopping Rules panel, set Max. Iterations to 30.

Select Orthogonal MP to use orthogonal matching pursuit.

Click Approximate.
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7 Matching Pursuit
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Generating MATLAB Code from
Wavelet Toolbox Wavelet Analyzer
App

You can denoise or compress a signal or image in the Wavelet Analyzer app and export
the MATLAB code to implement that operation at the command line. This approach allows
you to set denoising thresholds or compression ratios aided by visualization tools and
save the commands to reproduce those operations at the command line.

• “Generate MATLAB Code for 1-D Decimated Wavelet Denoising and Compression”
on page 8-2

• “Generate MATLAB Code for 2-D Decimated Wavelet Denoising and Compression”
on page 8-11

• “Generate MATLAB Code for 1-D Stationary Wavelet Denoising” on page 8-17
• “Generate MATLAB Code for 2-D Stationary Wavelet Denoising” on page 8-23
• “Generate MATLAB Code for 1-D Wavelet Packet Denoising and Compression”

on page 8-27
• “Generate MATLAB Code for 2-D Wavelet Packet Denoising and Compression”

on page 8-31
• “Generate Code to Denoise a Signal” on page 8-35
• “Code Generation Support, Usage Notes, and Limitations” on page 8-37
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Generate MATLAB Code for 1-D Decimated Wavelet
Denoising and Compression

Wavelet 1-D Denoising
You can generate MATLAB code to reproduce app-based 1-D wavelet denoising at the
command line. You must perform this operation in the Wavelet 1-D - - Denoising tool.
You must first denoise your signal before you can enable the File > Generate Matlab
Code (Denoising Process) operation.

The generated MATLAB code does not include the calculation of the thresholds using
thselect or wbmpen.

Denoise Doppler Signal

1 Enter waveletAnalyzer at the MATLAB command prompt.
2 Select Wavelet 1-D in the Wavelet Analyzer.
3 Load the noisy Doppler example analysis. Select File > Example Analysis > Noisy

Signals - Constant Noise Variance > with sym4 at level 5 - - -> Noisy Doppler.
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After selecting the analysis, the wavelet decomposition appears.

4 Click Denoise.
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5 The original details coefficients appear on the left side of the display. In order to time
align decomposition levels across all scales, wavelet coefficients are replicated at
each scale to account for the missing time points. Therefore, as the scale becomes
coarser, the coefficients assume a staircase-like appearance.

In the Select thresholding method drop-down menu, select the default Fixed
form threshold. Use the default soft option. Set the thresholds by level as follows:

• level 5 — 3.5
• level 4 — 3.72
• level 3 — 3.0
• level 2 — 2.0
• level 1 — 3.0

Click Denoise.
6 Generate the MATLAB code by selecting File > Generate Matlab Code (Denoising

Process).

The operation generates the following MATLAB code.
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function sigDEN = func_denoise_dw1d(SIG)
% FUNC_DENOISE_DW1-D Saved Denoising Process.
%   SIG: vector of data
%   -------------------
%   sigDEN: vector of denoised data

% Analysis parameters.
%---------------------
wname = 'sym4';
level = 5;

% Denoising parameters.
%----------------------
% meth = 'sqtwolog';
% scal_or_alfa = one;
sorh = 's';    % Specified soft or hard thresholding
thrParams =  [...
    3.00000000 ; ...
    2.00000000 ; ...
    3.00000000 ; ...
    3.72000000 ; ...
    3.50000000   ...
    ];

% Denoise using CMDDENOISE.
%--------------------------
sigDEN = cmddenoise(SIG,wname,level,sorh,NaN,thrParams);

7 Save func_denoise_dw1d.m in a folder on the MATLAB search path. Execute the
following code.

load noisdopp;
SIG = noisdopp;
% func_denoise_dw1d.m is generated code
sigDEN = func_denoise_dw1d(SIG);

8 Export the denoised signal from the app by selecting File > Save > Denoised
Signal.
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Save the denoised signal as denoiseddoppler.mat in a folder on the MATLAB
search path. Load denoiseddoppler.mat in the MATLAB workspace. Compare
denoiseddoppler with your command line result.

load denoiseddoppler;
plot(sigDEN,'k'); axis tight;
hold on;
plot(denoiseddoppler,'r');
legend('Command Line','GUI','Location','SouthEast');
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Interval Dependent 1-D Wavelet Denoising

1 Enter waveletAnalyzer at the MATLAB command prompt.
2 Select Wavelet 1-D.
3 At the MATLAB command prompt, type

load leleccum;

In the Wavelet 1-D tool, select File > Import from Workspace > Import Signal.
When the Import from Workspace dialog box appears, select the leleccum
variable. Click OK to import the data.

4 Select the sym4 wavelet, and set Level equal to 3. Click Analyze.
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When you inspect the original signal and the finest-scale wavelet coefficients, you see that
the noise variance is not constant. In this situation, interval-dependent thresholding is
useful. To implement interval-dependent denoising:

1 Click Denoise.
2 Under Select thresholding method, select Rigorous SURE.
3 Select Int. dependent threshold settings.
4 In the Interval Dependent Threshold Settings for Wavelet 1-D tool, choose

Generate Default Intervals. Three intervals are created. Click Propagate to
propagate the intervals to all levels.

5 Click Close, and answer Yes to Update Thresholds?.
6 Select Denoise.
7 Generate the MATLAB code by selecting File > Generate Matlab Code (Denoising

Process).

The operation generates the following MATLAB code.
function sigDEN = func_denoise_dw1d(SIG)
% FUNC_DENOISE_DW1D Saved Denoising Process.
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%   SIG: vector of data
%   -------------------
%   sigDEN: vector of denoised data

% Analysis parameters.
%---------------------
wname = 'sym4';
level = 3;

% Denoising parameters.
%----------------------
% meth = 'rigrsure';
% scal_or_alfa = one;
sorh = 's';    % Specified soft or hard thresholding
thrSettings =  {...
    [...
    1.000000000000000   2410.000000000000000      5.659608351110114; ...
    2410.000000000000000   3425.000000000000000   19.721391195242880; ...
    3425.000000000000000   4320.000000000000000    4.907947952868359; ...
    ]; ...
    [...
    1.000000000000000   2410.000000000000000      5.659608351110114; ...
    2410.000000000000000   3425.000000000000000   5.659608351110114; ...
    3425.000000000000000   4320.000000000000000   5.659608351110114; ...
    ]; ...
    [...
    1.000000000000000   2410.000000000000000      5.659608351110114; ...
    2410.000000000000000   3425.000000000000000   5.659608351110114; ...
    3425.000000000000000   4320.000000000000000   5.659608351110114; ...
    ]; ...
    };

% Denoise using CMDDENOISE.
%--------------------------
sigDEN = cmddenoise(SIG,wname,level,sorh,NaN,thrSettings);

8 To avoid confusion with the MATLAB code generated in “Denoise Doppler Signal” on
page 8-2, change the function definition line. Change the function definition to:

function sigDEN = func_IDdenoise_dw1d(SIG)

Save the MATLAB program as func_IDdenoise_dw1d.m in a folder on the MATLAB
search path.

9 Save the denoised signal as denoisedleleccum.mat with File > Save > Denoised
Signal in a folder on the MATLAB search path.

Execute the following code.

load leleccum;
load denoisedleleccum;
sigDEN = func_IDdenoise_dw1d(leleccum);
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plot(sigDEN,'k');
hold on;
plot(denoisedleleccum,'r');
legend('Command Line','GUI');
norm(sigDEN-denoisedleleccum,2)
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Generate MATLAB Code for 2-D Decimated Wavelet
Denoising and Compression

In this section...
“2-D Decimated Discrete Wavelet Transform Denoising” on page 8-11
“2-D Decimated Discrete Wavelet Transform Compression” on page 8-14

2-D Decimated Discrete Wavelet Transform Denoising
You can generate MATLAB code to reproduce app-based 2-D decimated wavelet denoising
at the command line. You must perform this operation in the Wavelet 2-D – – Denoising
tool. You must first denoise your image before you can enable the File > Generate
Matlab Code (Denoising Process) operation.

1 Enter waveletAnalyzer at the MATLAB command prompt.
2 Select Wavelet 2-D.
3 Load the Noisy SinSin example indexed image. Using the default biorthogonal

wavelet and level 3 decomposition, click Denoise.
4 In the Select thresholding method drop-down menu, select the default Fixed

form threshold and soft options. Use the default Unscaled white noise. Set
the thresholds by level for the horizontal, diagonal, and vertical coefficients as
follows:

• Level 3 — 4
• Level 2 — 4
• Level 1 — 8

Enter these thresholds for the horizontal, diagonal, and vertical coefficients.
5 Select Denoise.
6 Generate the MATLAB code with File > Generate Matlab Code (Denoising

Process).
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The operation generates the following MATLAB code.
function [XDEN,cfsDEN,dimCFS] = func_denoise_dw2d(X)
% FUNC_DENOISE_DW2-D Saved Denoising Process.
%   X: matrix of data
%   -----------------
%   XDEN: matrix of denoised data
%   cfsDEN: decomposition vector (see WAVEDEC2)
%   dimCFS: corresponding bookkeeping matrix

% Analysis parameters.
%---------------------
wname = 'bior6.8';
level = 3;

% Denoising parameters.
%-----------------------
% meth = 'sqtwolog';
% scal_OR_alfa = one;
sorh = 's';    % Specified soft or hard thresholding
thrParams =  [...
    8.00000000     4.00000000     4.00000000 ; ...
    8.00000000     4.00000000     4.00000000 ; ...
    8.00000000     4.00000000     4.00000000   ...
    ];
roundFLAG = true;
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% Denoise using CMDDENOISE.
%--------------------------
[coefs,sizes] = wavedec2(X,level,wname);
[XDEN,cfsDEN,dimCFS] = wdencmp('lvd',coefs,sizes, ...
    wname,level,thrParams,sorh);

if roundFLAG , XDEN = round(XDEN); end
if isequal(class(X),'uint8') , XDEN = uint8(XDEN); end

7 Save func_denoise_dw2d.m in a folder on the MATLAB search path, and execute
the following code.

load noissi2d.mat;
noissi2d = X;
[XDEN,cfsDEN,dimCFS] = func_denoise_dw2d(noissi2d);

8 Save your denoised image in a folder on the MATLAB search path as
denoisedsin.mat.

Load the denoised image in the MATLAB workspace. Compare the result with your
generated code.

load denoisedsin.mat;
% denoised image loaded in variable X
subplot(121);
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imagesc(X); title('Image denoised in the GUI');
subplot(122);
imagesc(XDEN); title('Image denoised with generated code');
% Norm of the difference is zero
norm(XDEN-X,2)

2-D Decimated Discrete Wavelet Transform Compression
You can generate MATLAB code to reproduce app-based 2-D decimated wavelet
compression at the command line. You must perform this operation in the Wavelet 2-D --
Compression tool. You must first compress your image before you can enable the File >
Generate Matlab Code (Compression Process) operation.

1 Enter waveletAnalyzer at the MATLAB command prompt.
2 Select Wavelet 2-D.
3 At the MATLAB command prompt, type

load detfingr

In the Wavelet 2-D tool, select File > Import from Workspace > Load Image.
When the Import from Workspace dialog box appears, select the X variable. Click
OK to import the data.

4 Select the bior3.5 wavelet, and set Level to 3.
5 Click Analyze, then click Compress.
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6 Using the default Global thresholding, set Select thresholding method to
Bal.sparsity-norm (sqrt).

7 Click Compress.
8 File > Generate Code (Compression Process) generates the following code.

function [XCMP,cfsCMP,dimCFS] = func_compress_dw2d(X)
% FUNC_COMPRESS_DW2D Saved Compression Process.
%   X: matrix of data
%   -----------------
%   XCMP: matrix of compressed data
%   cfsCMP: decomposition vector (see WAVEDEC2)
%   dimCFS: corresponding bookkeeping matrix

% Analysis parameters.
%---------------------
wname = 'bior3.5';
level = 3;

% Compression parameters.
%------------------------
% meth = 'sqrtbal_sn';
sorh = 'h';    % Specified soft or hard thresholding
thrSettings = 10.064453124999996;
roundFLAG = true;

% Compression using WDENCMP.
%--------------------------
[coefs,sizes] = wavedec2(X,level,wname);
[XCMP,cfsCMP,dimCFS] = wdencmp('gbl',coefs,sizes, ...
    wname,level,thrSettings,sorh,1);
if roundFLAG , XCMP = round(XCMP); end
if isequal(class(X),'uint8') , XCMP = uint8(XCMP); end

9 Save the MATLAB program, func_compress_dw2d.m, in a folder on the MATLAB
search path. Execute the following code at the command line.

load detfingr.mat;
% Image data is in X
[XCMP,cfsCMP,dimCFS] = func_compress_dw2d(X);

10 Save the compressed image from the Wavelet 2-D - - Compression tool in a folder
on the MATLAB search path. Use File > Save > Compressed Image, and name the
file compressed_fingerprint.mat. Execute the following code.
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load compressed_fingerprint.mat;
% Image data is in X
norm(XCMP-X,2)
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Generate MATLAB Code for 1-D Stationary Wavelet
Denoising

You can generate MATLAB code to reproduce app-based 1-D nondecimated (stationary)
wavelet denoising at the command line. You must perform this operation in the
Stationary Wavelet Transform Denoising 1-D tool. You must first denoise your signal
before you can enable the File > Generate Matlab Code (Denoising Process)
operation.

1-D Stationary Wavelet Transform Denoising
1 Enter waveletAnalyzer at the MATLAB command prompt.
2 Select SWT Denoising 1-D.
3 Load the Noisy bumps example. Select File > Example Analysis > Noisy Signals

> with sym4 at level 5 - - -> Noisy bumps
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4 Set the thresholds as follows:

• Level 1 — 3.5
• Level 2 — 3.4
• Level 3 — 2.3
• Level 4 — 5.3
• Level 5 — 2.2

Click Denoise.
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5 Generate the MATLAB code with File > Generate Matlab Code (Denoising
Process).
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The operation generates the following MATLAB code.
function [sigDEN,wDEC] = func_denoise_sw1d(SIG)
% FUNC_DENOISE_SW1-D Saved Denoising Process.
%   SIG: vector of data
%   -------------------
%   sigDEN: vector of denoised data
%   wDEC: stationary wavelet decomposition

% Analysis parameters.
%---------------------
wname = 'sym4';
level = 5;

% Denoising parameters.
%----------------------
% meth = 'sqtwolog';
% scal_OR_alfa = one;
sorh = 's';    % Specified soft or hard thresholding
thrParams =  {...
    [...
    1.00000000  1024.00000000     3.50000000; ...
    ]; ...
    [...
    1.00000000  1024.00000000     3.40000000; ...
    ]; ...
    [...
    1.00000000  1024.00000000     2.30000000; ...
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    ]; ...
    [...
    1.00000000  1024.00000000     5.29965570; ...
    ]; ...
    [...
    1.00000000  1024.00000000     2.20000000; ...
    ]; ...
    };

% Decompose using SWT.
%---------------------
wDEC = swt(SIG,level,wname);

% Denoise.
%---------
len = length(SIG);
for k = 1:level
    thr_par = thrParams{k};
    if ~isempty(thr_par)
        NB_int = size(thr_par,1);
        x      = [thr_par(:,1) ; thr_par(NB_int,2)];
        x      = round(x);
        x(x<1) = 1;
        x(x>len) = len;
        thr = thr_par(:,3);
        for j = 1:NB_int
            if j==1 , d_beg = 0; else d_beg = 1; end
            j_beg = x(j)+d_beg;
            j_end = x(j+1);
            j_ind = (j_beg:j_end);
            wDEC(k,j_ind) = wthresh(wDEC(k,j_ind),sorh,thr(j));
        end
    end
end

% Reconstruct the denoise signal using ISWT.
%-------------------------------------------
sigDEN = iswt(wDEC,wname);

6 Save func_denoise_sw1d.m in a folder on the MATLAB search path. Execute the
following code.

load noisbump.mat;
[sigDEN,wDEC] = func_denoise_sw1d(noisbump);

7 Select File > Save Denoised Signal, and save the denoised signal as
denoisedbumps.mat in a folder on the MATLAB search path.
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Execute the following code.

load denoisedbump.mat;
plot(sigDEN,'k'); axis tight;
hold on;
plot(denoisedbump,'r');
% norm of the difference
norm(sigDEN-denoisedbump,2)

Note Thresholds are derived from a subset of the coefficients in the stationary wavelet
decomposition. For more information, see “Coefficient Selection”.
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Generate MATLAB Code for 2-D Stationary Wavelet
Denoising

You can generate MATLAB code to reproduce app-based 2-D stationary wavelet denoising
at the command line. You can generate code to denoise both indexed and truecolor
images. You must perform this operation in the SWT Denoising 2-D tool. You must first
denoise your image before you can enable the File > Generate Matlab Code
(Denoising Process) operation.

2-D Stationary Wavelet Transform Denoising
1 Enter waveletAnalyzer at the MATLAB command prompt.
2 Select SWT Denoising 2-D.
3 At the MATLAB command prompt, type

load noiswom;

In the SWT Denoising 2-D tool, select File > Import Image from Workspace.
When the Import from Workspace dialog box appears, select the X variable. Click
OK to import the image.
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4 Select the db4 wavelet, and set the Level to 5.
5 Click Decompose Image.
6 Use the default soft thresholding method with Fixed form threshold and

Unscaled white noise for Select noise structure.
7 Set the following thresholds for the horizontal, diagonal, and vertical details. Ensure

that you set the thresholds for the three detail coefficient types.

• Level 1 — 5
• Level 2 — 4
• Level 3 — 3
• Level 4 — 2
• Level 5 — 1

8 Click Denoise.
9 Select File > Generate Matlab Code (Denoising Process).

The operation generates the following MATLAB code.

function [XDEN,wDEC] = func_denoise_sw2d(X)
% FUNC_DENOISE_SW2D Saved Denoising Process.
%   X: matrix of data
%   -----------------
%   XDEN: matrix of denoised data
%   wDEC: stationary wavelet decomposition

% Analysis parameters.
%---------------------
wname = 'db4';
level = 5;

% Denoising parameters.
%-----------------------
% meth = 'sqtwolog';
% scal_OR_alfa = one;
sorh = 's';    % Specified soft or hard thresholding
% Order of thresholds down each column is H,D,V
% Order in SWT2 output is H,V,D where each coefficient
% matrix is repeated L times where L is the number of levels.
thrSettings =  [...
    5.0000      4.0000      3.0000      2.0000      1.0000 ; ...
    5.0000      4.0000      3.0000      2.0000      1.0000 ; ...
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    5.0000      4.0000      3.0000      2.0000      1.0000   ...
    ];
roundFLAG = false;

% Decompose using SWT2.
%---------------------
wDEC = swt2(X,level,wname);

isRGB = ndims(wDEC) == 4 && size(wDEC,3) == 3;
% Denoise
permDir = [1 3 2];

for j = 1:level
    for kk=1:3
        ind = (permDir(kk)-1)*level+j;
        thr = thrSettings(kk,j);
        if isRGB
            wDEC(:,:,:,ind) = wthresh(wDEC(:,:,:,ind),sorh,thr);
        else
            wDEC(:,:,ind) = wthresh(wDEC(:,:,ind),sorh,thr);
        end
    end
end

% Reconstruct the denoise signal using ISWT2.
%-------------------------------------------
XDEN = iswt2(wDEC,wname);
if roundFLAG , XDEN = round(XDEN); end

10 Save this MATLAB program as func_denoise_sw2d.m in a folder on the MATLAB
search path.

Execute the following code.

load noiswom
[XDEN,wDEC] = func_denoise_sw2d(X);

11 Save the denoised image as denoisedwom.mat in a folder on the MATLAB search
path.
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12 Execute the following code.

load denoisedwom
% Compare the GUI and command line results
imagesc(X); title('GUI Operation'); colormap(gray);
figure;
imagesc(XDEN); title('Command Line Operation');
colormap(gray);
norm(XDEN-X,2)

Note Thresholds are derived from a subset of the coefficients in the stationary wavelet
decomposition. For more information, see “Coefficient Selection”.
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Generate MATLAB Code for 1-D Wavelet Packet
Denoising and Compression

1-D Wavelet Packet Denoising
You can generate MATLAB code to reproduce app–based 1-D wavelet packet denoising at
the command line. You must perform this operation in the Wavelet Packet 1-D - -
Denoising tool. You must first denoise your signal before you can enable the File >
Generate Matlab Code (Denoising Process) operation.

1 Enter waveletAnalyzer at the MATLAB command prompt.
2 Select Wavelet Packet 1-D.
3 At the MATLAB command prompt, type

load noisbump

In the *** tool, select File > Import from Workspace > Import Signal. When the
Import from Workspace dialog box appears, select the noisbump variable. Click
OK to import the data.
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4 Select the db4 wavelet, and set the Level to 4. Accept the default value Shannon for
Entropy.

5 Click Analyze.
6 Click Denoise.
7 Under Select thresholding method, accept the default Fixed form thr.

(unscaled wn) with the soft radio button enabled.

Set Select Global Threshold to 2.75.
8 Click Denoise.
9 Select File > Generate Matlab Code (Denoising Process)

The operation generates the following MATLAB code.
function [sigDEN,wptDEN] = func_denoise_wp1d(SIG)
% FUNC_DENOISE_WP1D Saved Denoising Process.
%   SIG: vector of data
%   -------------------
%   sigDEN: vector of denoised data
%   wptDEN: wavelet packet decomposition (wptree object)

% Analysis parameters.
%---------------------
Wav_Nam = 'db4';
Lev_Anal = 4;
Ent_Nam = 'shannon';
Ent_Par = 0;

% Denoising parameters.
%----------------------
% meth = 'sqtwologuwn';
sorh = 's';    % Specified soft or hard thresholding
thrSettings = {sorh,'nobest',2.750000000000000,1};

% Decompose using WPDEC.
%----------------------
wpt = wpdec(SIG,Lev_Anal,Wav_Nam,Ent_Nam,Ent_Par);

% Nodes to merge.
%-----------------
n2m = [];
for j = 1:length(n2m)
    wpt = wpjoin(wpt,n2m(j));
end

% Denoise using WPDENCMP.
%------------------------
[sigDEN,wptDEN] = wpdencmp(wpt,thrSettings{:});

Save func_denoise_wp1d.m in a folder on the MATLAB search path.
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Save the denoised signal from the Wavelet Packet 1-D - - Denoising tool as
wp_denoisedbump.mat in a folder on the MATLAB search path.

Execute the following code.

load noisbump;
[sigDEN,wptDEN] = func_denoise_wp1d(noisbump);
load wp_denoisedbump;
plot(sigDEN); title('Denoised Signal');
axis([1 1024 min(sigDEN)-1 max(sigDEN+1)]);
norm(sigDEN-wp_denoisedbump,2)
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Generate MATLAB Code for 2-D Wavelet Packet
Denoising and Compression

2-D Wavelet Packet Compression
You can generate MATLAB code to reproduce app–based 2-D wavelet packet compression
at the command line. You must perform this operation in the Wavelet 2-D - -
Compression tool. You must first compress your image before you can enable the File >
Generate Matlab Code (Compression Process) operation.

1 Enter waveletAnalyzer at the MATLAB command prompt.
2 Select Wavelet Packet 2-D.
3 Select File > Load > Example Analysis > Indexed Images, and load the tire.

4 Using the default parameter settings, click Best Tree.
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5 Click Compress.
6 Set Select thresholding method to Bal.sparsity-norm (sqrt).
7 Click Compress.
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8 File > Generate Code (Compression Process) generates the following code.
function [XCMP,wptCMP] = func_compress_wp2d(X)
% FUNC_COMPRESS_WP2D Saved Compression Process.
%   X: matrix of data
%   -----------------
%   XCMP: matrix of compressed data
%   wptCMP: wavelet packet decomposition (wptree object)

% Analysis parameters.
%---------------------
Wav_Nam = 'haar';
Lev_Anal = 2;
Ent_Nam = 'shannon';
Ent_Par = 0;

% Compression parameters.
%-----------------------
% meth = 'sqrtbal_sn';
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sorh = 'h';    % Specified soft or hard thresholding
thrSettings = {sorh,'nobest',16.499999999999886,1};
roundFLAG = true;

% Decompose using WPDEC2.
%-----------------------
wpt = wpdec2(X,Lev_Anal,Wav_Nam,Ent_Nam,Ent_Par);

% Nodes to merge.
%-----------------
n2m = [2  3];
for j = 1:length(n2m)
    wpt = wpjoin(wpt,n2m(j));
end

% Compression using WPDENCMP.
%----------------------------
[XCMP,wptCMP] = wpdencmp(wpt,thrSettings{:});
if roundFLAG , XCMP = round(XCMP); end
if isequal(class(X),'uint8') , XCMP = uint8(XCMP); end

9 Save the generated MATLAB code as func_compress_wp2d.m in a folder on the
MATLAB search path, and execute the following code.

load tire;
[XCMP,wptCMP] = func_compress_wp2d(X);

10 Save the compressed image from the Wavelet 2-D -- Compression tool as
compressed_tire.mat in a folder on the MATLAB search path. Use File > Save >
Compressed Image to save the compressed image.

11 Execute the following code to compare the command line and Wavelet Analyzer app
result.

load compressed_tire.mat;
norm(XCMP-X,2)
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Generate Code to Denoise a Signal
This example shows how to use MATLAB Coder™ to generate executable code. The
Wavelet Toolbox supports code generation for functions that support discrete wavelet
transform (DWT), maximal overlap discrete wavelet transform (MODWT), maximal
overlap wavelet packet transform (MODWPT), and denoising workflows. This example
requires a MATLAB Coder license.

Define a function that uses wden to denoise a signal. You also specify the level to which to
denoise the signal when you run the generated code.

1 From the MATLAB command prompt, create the file, sigdenoise.m.

edit sigdenoise

If you do not have permission to write to the current working folder, change the
current folder to one that is writable.

2 Copy this sigdenoise function code into the sigdenoise.m file. Your file must
include %#codegen to indicate that this function will generate code.

function xdenoise = sigdenoise(x,level)

%#codegen

wname = 'sym4';
xdenoise = wden(x,'sqtwolog','s','mln',level,wname);

3 Save the file.
4 At the MATLAB command line, use the codegen function to compile the sigdenoise

function into a MEX file. You can use the -o option to specify the name of the
executable. If you do not use the -o option, the generated MEX file has the same
name as the original MATLAB file with _mex appended. You can include the -report
option to generate a compilation report. This report shows the original MATLAB code
and the associated files created during code generation. The -args option specifies
the data types of the inputs required to run the generated code. In this case, a
variable-size row vector and a scalar input are required.

codegen sigdenoise.m -config:mex -args {coder.typeof(1,[1,inf],[false,true]),0}
5 At the MATLAB command line, run the generated code on noisy Doppler data and

denoise it to level three. Compare the original and denoised signals.

load noisdopp
xden = sigdenoise_mex(noisdopp,3);
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plot([noisdopp',xden'])
legend('Original','Denoised')

For a list of Wavelet Toolbox functions supported for code generation and associated
limitations, see “Code Generation Support, Usage Notes, and Limitations” on page 8-37.
For more information on code generation, see “Getting Started with MATLAB Coder”
(MATLAB Coder).
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Code Generation Support, Usage Notes, and Limitations
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

appcoef* 1-D approximation coefficients
appcoef2* 2-D approximation coefficients
cwtfilterbank* Continuous wavelet transform filter bank
cwtfreqbounds* CWT maximum and minimum frequency or period
ddencmp* Default values for denoising or compression
detcoef 1-D detail coefficients
detcoef2 2-D detail coefficients
dwt Single-level 1-D discrete wavelet transform
dwt2 Single-level discrete 2-D wavelet transform
dyadup* Dyadic upsampling
emd Empirical mode decomposition
filterbank Shearlet system filters
framebounds Shearlet system frame bounds
idwt Single-level inverse discrete 1-D wavelet transform
idwt2* Single-level inverse discrete 2-D wavelet transform
imodwpt Inverse maximal overlap discrete wavelet packet transform
imodwt Inverse maximal overlap discrete wavelet transform
isheart2 Inverse shearlet transform
mdwtdec* Multisignal 1-D wavelet decomposition
mdwtrec* Multisignal 1-D wavelet reconstruction
meyeraux Meyer wavelet auxiliary function
modwpt Maximal overlap discrete wavelet packet transform
modwptdetails Maximal overlap discrete wavelet packet transform details
modwt Maximal overlap discrete wavelet transform
modwtmra Multiresolution analysis based on MODWT
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numshears Number of shearlets
qmf Scaling and Wavelet Filter
shearletSystem Bandlimited shearlet system
sheart2 Shearlet transform
thselect Threshold selection for denoising
wavedec* 1-D wavelet decomposition
wavedec2* 2-D wavelet decomposition
waverec* 1-D wavelet reconstruction
waverec2* 2-D wavelet reconstruction
wden* Automatic 1-D denoising
wdencmp* Denoising or compression
wextend* Extend vector or matrix
wnoisest Estimate noise of 1-D wavelet coefficients
wthcoef 1-D wavelet coefficient thresholding
wthcoef2 Wavelet coefficient thresholding 2-D
wthresh Soft or hard thresholding
wvd* Wigner-Ville distribution and smoothed pseudo Wigner-Ville distribution
xwvd* Cross Wigner-Ville distribution and cross smoothed pseudo Wigner-Ville

distribution
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Wavelet Analyzer App Features
Summary

This appendix explains some of the features of the Wavelet Analyzer app.

A



General Features
Some features of the Wavelet Toolbox graphical user interface are

• Color coding
• Connectedness of plots
• Using the mouse
• Controlling the colormap
• Controlling the number of colors
• Controlling the coloration mode
• Customizing graphical objects
• Zooming in on plots
• Using menus
• Using View Axes button
• Using Interval Dependent Threshold Settings tool

Note In this appendix, axis (or axes) refers to the MATLAB graphic object.

Color Coding
In all the graphical tools, signals and analysis components are color coded as follows.

Signal Shown In
Original Red
Reconstructed or synthesized Yellow
Approximations Variegated shades of blue

(high level = darker)
Details Variegated shades of green

(high level = darker)
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Connection of Plots
Plots containing related information and graphed on the same abscissa are connected in
the sense that manipulations performed on one plot affect all others in the same way. For
images, the connection holds in both abscissa and ordinate. You can manipulate all plots
along an individual axis (X or Y) or you can manipulate all plots along both axes at the
same time (XY).

For example, the approximations and details shown in the separate mode view of a
decomposition all respond together when any of the plots is magnified or zoomed.

Click and drag your mouse over the region you want to zoom. Clicking XY+ results in the
zoom being applied to all the plots.

• Zoom in on relevant detail.

One advantage of using the graphical interface tools is that you can zoom in easily on
any part of the signal and examine it in greater detail.

Drag a rubber band box (by holding down the left mouse button) over the portion of
the signal you want to magnify. Here, we've selected the noisy part of the original
signal.
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Click the X+ button (located at the bottom of the screen) to zoom horizontally.

The Wavelet 1-D tool zooms all the displayed signals.

The other zoom controls do more or less what you'd expect them to. The X- button, for
example, zooms out horizontally. The history function keeps track of all your views of
the signal. Return to a previous zoom level by clicking the left arrow button.
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• Zooming in on Detail

Drag a rubber band box (by holding down the left mouse button) over the portion of
the image you want to magnify.

Click the XY+ button (located at the bottom of the screen) to zoom horizontally and
vertically.

• The History pane enables you to remember how you zoom the axes so that you can
toggle back and forth between views.

Using the Mouse
Wavelet Toolbox software uses three types of mouse control.

Left Mouse Button Middle Mouse Button Right Mouse Button
Make selections. Activate
controls.

Display cross-hairs to show
position-dependent
information.

Translate plots up and
down, and left and right.

Note The functionality of the middle mouse button and the right mouse button can be
inverted depending on the platform.
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Making Selections and Activating Controls

Most of your work with Wavelet Toolbox graphical tools involves making selections and
activating controls. You do this using the left (or only) mouse button.

Translating Plots

By holding down the right mouse button (or its equivalent on a one- or two-button
mouse), you can move the mouse to draw a rectangle in either a horizontal or vertical
orientation. Releasing the middle mouse button then causes the plot to shift horizontally
(or vertically) by an amount proportional to the width (or height) of the rectangle.

Displaying Position-Dependent Information

When you hold down the middle mouse button (or its equivalent on a one- or two-button
mouse), a cross-hair cursor appears over the graph or plot. Position-dependent
information also appears in the Info box located at the bottom center of the tool. The type
of information that appears depends on what tool you are using and the plot in which your
cursor is located..
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Controlling the Colormap
The Colormap selection box, located at the lower right of the window, allows you to
adjust the colormap that is used to plot images or coefficients (wavelet or wavelet
packet).

This is more than an aesthetic adjustment because you are likely to see different features
depending on your colormap selection.

Controlling the Number of Colors

The Nb. Colors slider, located at the bottom right of the window, allows you to adjust how
many colors the tool uses to plot images or coefficients (wavelet or wavelet packet). You
can also use the edit control to adjust the number of colors. Adjusting the number of
colors can highlight different features of the plot.

Consider the coefficients plot of the Koch curve generated in the Continuous Wavelet
tool, shown here using 129 colors.

and here using 68 colors.
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Controlling the Coloration Mode

In the Continuous Wavelet tools, the coloration of coefficients can be done in several
different ways.

Coloration mode — Three parameters are used color the coefficients.

• init or current — When you select init, coloration is performed with all the
coefficient values. When you select current, only the coefficients displayed in the
current axis limits are used.

• by scales or all scales — When you select by scale, the coloration is done
separately for each scale. When you select all scales, all scales are used.

• abs — When you select abs, the absolute values of the coefficients are used.

In the Wavelet 1-D tool, you access coefficients coloration with the More Display
Options button, and then select the desired Coloration Mode option.

The More Display Options button appears only when the Display mode is one of the
following — Show and Scroll, Show and Scroll (Stem Cfs), Superimposed, and Separate).
In this case, scales are replaced by levels in all options of the Coloration Mode menu.
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Using Menus
General Menu Bar

At the top of most windows you find the same kind of structure. The menu bar of each
figure in Wavelet Toolbox software is very similar to the menu bar of the default MATLAB
figures. You can use many of the tools that are offered in the menus and associated
toolbar of the standard MATLAB figures.

One of the main differences is the View menu, which depends on the current tool used.

View Dynamical Visualization Tool Option

The View > Dynamical Visualization Tool option lets you enable or disable the
Dynamical Visualization Tool located at the bottom of each window.

Enabling the Dynamical Visualization Tool activates the zoom, center, history, and axes
options at the bottom of the interactive tool.

Before using Zoom In, Zoom Out, or Rotate 3D options (or the equivalent icons from
the toolbar), you must disable the Dynamical Visualization Tool to avoid possible
conflicts.

Default Display Mode Option

The Default Display Mode option is specific to the Wavelet 1-D tool and lets you set a
default Display Mode for all the different analyses you perform inside the same tool.
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Using the View Axes Button
The Dynamical Visualization Tool is located at the bottom of most of the windows in
the Wavelet Toolbox software. In this tool, the View Axes toggle button lets you magnify
the axis that you choose.
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The toggle buttons in the View Axes figure are positioned so that you can understand
which axis is correlated with a button.

When you click the same toggle button again, you restore the original view.

Clicking the View Axes toggle button again closes the View Axes figure.
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Continuous Wavelet Tool Features
Here is an example of an option that allows you to perform analysis using different scale
modes.

Scale Settings

• Step by Step Mode — Specify the initial scale, the step size, and the maximum
scale.

• Power 2 Mode — The scales are 20, 21, up to power you select in the Power drop
down menu. These are the same scales used for discrete analysis.

• Manual Mode — Enter a vector of scales.
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Wavelet 2-D Tool Features
The Wavelet 2-D tool is described in “2-D Wavelet Analysis Using the Wavelet Analyzer
App” on page 3-195. Here is an example of an option that allows you to view a selected
part of the window at a full window resolution.

In the Full Size menu on the right side of the interactive tool

choose the image you want to view as full size. Click your selection again to restore the
original view.
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Wavelet Packet Tool Features (1-D and 2-D)

Coefficients Coloration
NAT or FRQ is for Natural or Frequency order.

By level or Global is for a coloration made level by level or taking all detail levels.

abs is used to take the absolute values of coefficients.

Node Action
When you select a node in the tree, the selected option is performed. A complete
description of options is provided in the following sections.

Node Label
The node labels can be changed using the pop-up menu. For example, the Type option
labels the nodes with (a) for approximation and (d) for detail.

Node Action Functionality
The available options in the Node Action menu are

• Visualize: When you select a node in the wavelet packet tree the corresponding signal
appears.

• Split/Merge: If a terminal node is selected, it is split, growing the wavelet packet
tree. Selecting other nodes has the behavior of merging all the nodes below it in the
wavelet packet tree.

• Recons.: When you select a node in the wavelet packet tree, the corresponding
reconstructed signal appears.

• Select On/Off: When On, you can select many nodes in the wavelet packet tree. Then
you can reconstruct a synthesized signal from the selected nodes using the
Reconstruct button on the main window. Use the Off selection to deselect all the
previous selected nodes.

• Statistics: When you select a node in the wavelet packet tree, the Statistics tool
appears using the signal corresponding to the selected node.
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• View Col. Cfs.: When active, this option removes all the colored coefficients
displayed, and lets you redraw only the corresponding coefficients by selecting a node
in the wavelet packet tree.
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Wavelet Display Tool
The Wavelet Display tool is mentioned in the section “Introduction to Wavelet Families”
in the Wavelet Toolbox Getting Started Guide.

The Refinement drop down menu allows you choose the number of points that the
wavelet and scaling functions are computed over. The number of points are in powers of
2. In the following figure, the db2 scaling and wavelet functions are computed over a grid
of 28 points.

The Information on: selections allow you to obtain more detailed information on the
current wavelet family, or all supported families.
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Wavelet Packet Display Tool
The Refinement drop down menu allows you choose the number of points that the
wavelet packets are computed over. The number of points are in powers of 2. In the
following figure, the db2 wavelet packets are computed over a grid of 28 points.

The Wav. Pack. from 0 to: allows you to choose the number of wavelet packets to
display.

The Information on: selections allow you to obtain more detailed information on the
current wavelet family, Daubechies Family (DB), or wavelet packets in general, W
Systems.

 Wavelet Packet Display Tool

A-17




